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Abstract 

A  major obstacle to   the  regression  analysis of road traffic fatality  data is tha t   da ta  is typically 
only  recorded for accidents  where  at  least  one fatality occurs.  Examples are the FARS database 
in  the USA and  the  Fatal  File of the  Federal Office of Road Safety. Data of t h i s  type is c d e d  
group truncated  data. A regression  technique  should  allow for this  truncation if it is to  avoid 
serious biases. T w o  exLting  methods are Conditional  Logistic  Regression (CLR) (Lui, McGce, 

discusses the  implementalion of a new procedure called Truncated OIdinal  Regression  (TOR). 
Rhodes, k Pollack (1988))  and Double Pair  Comparisons (DPC:) (Evans (1985)) .  This report 

The  technique is more general  and  efficient  than the existing  methods.  It  allows for an  ordmal 
scale oiinjury  such as uninjured,  moderate  injury,  severe  injury,  dead. The software  consists of 
an Splus interface  to a suite of c: routines.  Help files, instaht ian  scr ipts   and an  example  are 
provided  with  the  soitware. As a more  complicated  example of its use, T O R  is applied l o  the 
F a t d  File in Appendrx B. 



0 Executive Summary 

one  fatality  occurred  are  included. Define a binary  response  variable Y which is 0 if an  individual 
A common  feature of mass  databases on road  traffic  fatalities is that  only  accidents in which at least 

survives  and 1 if the  individual  dies.  Then  this  road  traffic  fatality  data is called  group  truncated 
data,  since  the data is only  collected if at  least  one  of  the  binary  response  variables is one.  The  aim of 

influence the  chance of a fatality,  for  example  age,  sex  and  seatbelt use. Ordinary  logistic  regression 
compiling  the m a s  databases is to  relate  the  fatalities  observed  to  the  variables  that  are  thought  to 

and O’Neill & Barry (199Da) recently  proposed  the  method of Duncated  Logistic  Regresion (TLR) 
will be  subject  to  serious  biases if it  is  applied to group  truncated  data.  O’Neill k Barry  (199%) 

available  to  handle  such  data  are  Conditional  Logistir  Regression  (CLR) which has  been  discussed 
and  its  extension TOR  to  analyze  group  truncated  binary  and  ordinal  data.  The  only  other  methods 

in the  road  traffic  context by Lui e t  al. (1988) and  the  Double  Pair  Comparisons  (DPC)  method of 
Evans (1985). 

to  the  most  accurate  estimates  and  the  most  powerful  tests of the  efferts of variables  on  survival 
I n  general,  sinre  TLR uses the full information  from  the  sample,  TLR  can  be  experted  to  lead 

prospects.  The  following  properties  hold. 

TLR will give the  best  estimates of the  effert on survival of various  variables, for example  seat 
belt  usage  or  age of the  orrupant. followed by C L R  and  then  DPC.  TLR will also  give  the 

in the  data.  CLR  ran  only use comparisons  within a vehirle.  For ~ x a m p l e   t h e  fac.t tha t  a 
most  powerful  hypothesis  tests.  This is Lec.ause TLR uses all the  information  that is available 

female  died in one  car  while a male  dldn’t  die in exarlly  the  same  rirrumstanres in another  rar 
does  not  contribute  any  information  to  the C:LR estimate. Also Cars in whirh all ocrupants  die 
contribute no information  to  the  CLR  estimate.  Both of these  scenarios would add  to   the  TLR 
information. DPC: only uses the  data  whirh  satisfies a condition on a single rontrol variable 
and so wi l l  normally  be less precise. 

More  effects ran  be  fitted  using TLR. The  conditional  logistir  regression  likelihood  equation 4 
only includes  terms  which vary within a given  accident.  For  example.  ior  single vehicle  acci- 
dents,  since  the  speed of the  car is constant  for all the  occupants, its effect on  the  survival 
prospects  rannot  be  estimated  using  CLR.  TLR  on  the  other  hand  can  he  used to estimate  its 
effect. CLR rannot  estimate  the effect of variables  which  do  not  vary  wilhin  accidents. 

Only TOR ran  be used  to  estimate  the  relative  seriousness of c r a h e s  for occupants.  The 
T L R  method  allows us to  estimate  thr  probability  that a given type of rrash will kill a given 
type of occupant.  The  TOR  method  enables  the  estimation of the  probahilities of the  various 
categories of injury. 

Only T L R  can  be used to estimate  the  total  number of potentially  fatal  rrashes.  The  TLR 
method  allows us to estimate  the  probability  that a particular  ronfiguration  of  factors results 

obtain an estimate of the  total  number of potentially  fatal  crashes  of  this  type.  The  estimates 
in a fatality.  By  dividing  the  observed  number of crashes of this  type by this  probability we 

of potentially  fatal  crashes. 
c.an then  be  summed  over  the  categories of crashes  to  obtain  an  estimate of the  total  number 

Unlike CLR,  TOR ran  be  generalized  to  different  link  functions.  Various  researchers  have 

events. The   TOR  me thod  allows us to rhoose the  link  function which best fits a given da ta  
found that  the  logistic link  given  in equation 1 does  not  work well when dealing  with very rare 

set. 
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The  a ims of the  seeding  grant were: 

To extend  the  truncated  logistic  regression  estimates of O'Neill & Barry  (1993b)  to  ordinal 
response  models. 

T o  develop  software  to  fit  the  generalned  model  to  the  level  where  it is accessible  to  road traffic 
researchers. . To apply  the  software  to a suitable  data set abstracted  from  the FORS 1988 Fatal  File. 

is given in O'Neill & Barry  (1993a) which is attached as Appendix A. The  software which has  bern 
All of these  aims  have  been  met.  The  extension of the  theory  to  Truncated  Ordinal  Regression 

developed  consists of an  Splus  interface  to a suite of C: routines.  Help  files,  installation  scripts  and 
an  example  are  provided  with the software. As a more  complirated  example of its use, T O R  is 
applied  to  the 1988 and 1990 Fatal  Files in Appendix 8. The  resulting  estimates of the effects of 
variables  are  ronsistent  with  expectations  and  are  more  precise  than  other  methods. 

Now that a rompnter  package is available  to  perform TOR. it  can  be  applied  to a variety of road 
traffic  accident  databases by interested  researchers. I t  will  improve  the  arrurary of the  eskimates 
and  ronclusions  and  allow  more  general  questions  to  be  posed 
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1 Introduction 
A common  feature of mass databases  on  road  traffic  fatalities is that  only  accidents in which a t   l e u t  
one  fatality  occurred  are  included. Define a binary  response  variable Y which is 0 if an individual 
survives  and 1 if the  individual  dies.  Then  this  type of da ta  is called  group  truncated  data  since  the 
da t a  is only collected if a t  least  one of the  binary  response  variables is one.  The  aim of compiling 
the mass databases is to  relate  the  fatalities  to  the  variables  that  are  thought to influence the  chance 

to serious  biases i f i t  is applied to group  truncated  data.  O’Neill & Barry (199%) recently  proposed 
of a fatality,  for  example  age,  sex  and  seatbelt  wearing.  Ordinary  logistic  regression will be  subject 

only  other  methods  available to handle  such  data  are  Conditional  Logistic  Regression  (CLR)  which 
the  method of Truncated  Logistic  Regression  (TLR)  to  analyze  group  truncated  binary  data.  The 

has  been  discussed  in  the  road traffir context  by  Lui e t  al. (1988) and  the  Double  Pair  Comparisons 
(DPC)  method of Evans (1985). The  aims of the  seeding  grant  were: 

To  extend  the  truncated  logistic  regression  estimates of O’Feill k Barry  (1993b)  to  ordinal 
response  models. 

T o  develop software- t o  fit the  generdized  model  to  the level where it is accessible to road  traffic 
researchers 

To apply  the  software  to a suitable  data  set  abstracted  from  the  FOR5  1988  Fatal File 

such as  uninjnred,  moderate  injury:  sewre  injury,  dead  have  been  made  and  are  described in Sec- 
Al l  of these  aims  have beFn met.  The  theoretical  extensions to group  t.runcated  ordinal  rrsponses 

tion 2 .  The  software  has  been  developed  and is described in  Section 3. The  methods  and  software 
are  applied to some  examples in Sertion 4 As a more  complicated  example of  its use, T L R  is applied 
to frontal collision data   f rom  the 1988 and 1990 FORS  Fatal  Files in Appendix B. The  merits of the 
new  software  are  discussed in section 5 .  

2 Methods 

2.1 The estimators 
The  method of TLR is described  in  the  paper  of O’Neill k Barry  (1993b) which is attached as 
Appendix B. Suppose  that  the  binary  variable Y is 0 if an  individual  survives  and 1 if the  indivldual 
dies. Also suppose  that z is a ve.ctor of covariates  thought to influence  survival.  Then  the  logistic 
model is that 

where 0 is a vector of unknown  covariates.  The  conventional  logistic  regression  estimate of p is the 
maximizer of 

JJ ~ ( 8 %  ~ ; ) Y ~ q ( B ,  zi)‘-’S. (2) 
romp/r 

This  method will result in biased  estimators of regression  parameters if it  is applied  to  truncated 
data.  

T h e  TLR approach  conditions on the  probability  that  an  accident is observed  which is the 
probability  that  it  results  in at least  one  fatality.  This  has  the effect of  introducing a divisor to 
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logistic  regression  likelihood  equation 2. The  truncated  logistic  regression  estimator of p is the 
maximizer of 

This  modification of the  logistic  regression  likelihood  equation 2 gives a well behaved  estimator 
which has all the  usual desirable  properties of maximum likelihood  estimators. 

deaths  in  an  accident. In the  example  given by Lui  et al. (1988) only  accidents  with  two  occupants 
The  conditional  logistic  regression  estimator is obtained by conditioning  on  the  exact  number of 

where  exactly  one  death  occnrred were used. The  conditional  logistic  likelihood  estimate of is the 
maximizer of 

n 
C , E o r c i d m * j  expfi 'zi 

exp FSj 
(4) 

where SI = Cdroth, i E n r r i d r n t j  p'z. is the  snm of the  covarlates of the  individuals who die in acci- 
dent j .  

The  method of Evans  (1985) is not a regression  technique. For two levels of a factor of interest. 
it  compares  the  relative  frequency of deaths  of  each level to  a syerified  control  group in another 
seating  position in the vehicle. 

2.2  Ordinal  Models 
Of  the  three  methods discussed above  only  the  trnncated  logistic  rpgression  likelihood of equation 3 
extends  naturally  to  ordinal  data.  The  arguments  that can be advanred  for  the use of the  ronditional 
logistic  regression  method in the  binary case  fail to  hold in the  ordlnal case. A full discussion of tha 
Truncated  Ordinal  Regression.is  given In O'Neill k Barry  (1993a)  which is attached as Appendix A. 

binary  data.  An  example where t = 0 would be a four point.  srale  for injury: 
T h e   o r d i n a l   r q o n s e  variable is assumed to  have k + I levels and  the  case k = 1 corrpsponds  to 

1 .  No injury 

2. Injury 

3. Died after  hospitalization 

4. Died at scene 

The   da ta  is said to b~ group  truncatad if the  responses  for a group  are  only  known if a t  least  one of 

case  the  injury levels are  only rec.orded if a t  least  one  person  in  the  accident  dies.  The  truncated 
the  group  attained a specified  level, j say. In the  above  example  the cutoff  might  be j = 3 in which 

ordinal  regression ( T O R )  likelihood is the  natural  generalization of equation 3. The  method  allows 
for  different  rdationshiys  between  the  covariates  to  the  logistic  link  given  in  equation 1. 

2.3 Theoretical  Relative  Merits of the  Methods 
Since  the T L R  uses the  full  information  from  the  sample  it can be  expected  to  lead  to  the  most 
ar.curate  inferenre.  The  following  general  properties  hold. 

T L R  will give  the  best  estimates of effects  such as for  example  seat  belt  usage or age of the 
occupant, followed by CLR and  then DPC. T L R  will also  give  the  most  powerful  hypothesis 
tests.  This  is  because  TLR uses all  the  information  that is available in the  data.  CLR ran 
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only  use  comparisons  within a vehicle. For example  the  fact  that a female  died in one  car 
while a male  didn't  die  in  exactly  the  same  circumstances  in  another ca r  does  not  contribute 

information  to  the CLR estimate.  Both of these  scenarios  would  add  to  the TLR  information. 
any  information  to  the CLR estimat?. Also cars  in  which all occupants  die  contribute no 

DPC only uses the  data  which  satisfies a condition on a single  control  variable  and so will 
normally  he less precise. 

More effects can be fitted  using TLR. The  conditional  logistic  regression  likelihood  equation 4 
only  includes  terms  which  vary  within a given acrident. For example, for single vehicle  acci- 
dents,  since  the  speed  of  the  car is constant  for  all  the  occupants, its effect on the  survival 
prospects  cannot  be  estimated  using CLR. TLR  on  the  other  hand  can  be used to  estimate  its 
effect. CLR cannot  estimate  the effect of variables which do  not  vary  within  accidents. 

Only TOR can  be used to  estimate  the  relative  seriousness of crashes for occupants.  The 
TLR method  allows us to  estimate  the  probability  that a given typ? of crash will  kill a given 
type of occupant.   The TOR method  enables  the  estimation of the  probabilities of the  various 
categories of injury. 

Only  TLR  can  be used to  estimate  the  total  number of potentially  fatal  crasl~es.  The  TLR 

in  a  fatality. By dividing  the  observed  number of crashes  of  this  type by this  probability we 
method  allows 11s to  estimate  the  probability  that a part,icolar  configuration or factors  results 

obtain a n  estimate of the  total  number of potentially fatal  rrashrs of this  type.  The  estimates 
can  then  be  summed  over  the  categories of mashes  to  obtain an estimate of the  total  number 
of potentially  fatal  rrashes. 

IJnlike  CLR, T O R  can  be  generalized to dlfferent  link  functions.  Various  researchers  have 
found  that  the  logistic  link  given  in  equation 1 does  not  work well when dealing  with very rare 
events.  The TOR method  allows 11s lo choose  the  link  function which best fits a given da ta  
set. 

3 Software 

3.1 Technical Issues 

3.1.1 Iutroductio~~ 

This  section  describes  installation  and  the  technical  opmation of the  software in greater  detail.  The 

or are  having  installation  problems.  It  is  assumed  that users wishing  to  modify  the  routines will have 
technical  detail is included for users  who  may wish to  modify  the  software for a particular  purpose, 

ordinal  regressions.  The  general  reader  may  wish  to  skip  to  the  installation  section. 
a sound  knowledge of Splus  and C : ,  and will be  familiar  with  the  issues  involved in fitting  truncated 

3.1.2 Geueral description of routims 

The  programs  are  written  to  take  advantage of the  Splus  envirornent for data  analysis  with  the 
efficiency and  control of C code. T h e  roles are  divided as follows: 

specification  is  consistent  with  the  assumptions of the  model.  Thus it uses the  built in functionality 
The  routines  use  the  Splus  language  to  allow  the  specification of the  model  and  to  ensure  that  the 

of Splus to construct  factors/contrasts  and  hence  the  design  matrix. 
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Splus is notoriously  poor at performing  iteration  and in freeing  memory  after  function  calls. 
Hence the  calls  to C are used when  these  factors would come  into  play.  These  calls  are  characterised 
by the  fact  that  they  have  been  written at the lowest level possible, in the  sense  that  Splus  performs 
as much of the work as is sensiblejpossible  before  passing  to  the C code. T h e  calls to C from Splus 
are 

formxblocks:  This  takes a (model)  matrix  and  the  number of levels of the  response  and  returns 
a matrix  correctly blocked  for the  proportional  odds  model. For example if the  model  matrix 
produced by Splus is: 

[ :  : ; :] 
with 3 (as I is redundant) levels of response to be parametrised  the  function would return (as 
1 is   redundant) 

1 0 1 2 3 4  

[ l  0 5 6 i i ]  0 1 1 2 . 7 4  

0 1 5 6  

formZ: T h ~ s  takes a vector of the  responses (assumes integer lev& (ie 1.2,3 .. k))  and  returns 
the  response vec.tor needed by the  fitting func.. For example if lh r  possible response l e ~ e l s  are 
1-3 then i f :  

rrsponse = [ 1 :I 2 ] 

returns 
r n l n t =  [ 1 1 0 0 1 0 1  

fitfunc:  This  performs  the fisher scoring.  It takes the design matrix,  the  response vec, the 
vector of groups,  the  truncation  point  and  an  initial  estimate o f  the  parameters,  and  iterates 
until  convergence. 

be modified. As an  example  say  there is a problem in the convergence of a model  that is being  fitted. 
The  result is that  the  Croutines  are effectively support routines  to Splus,  and  should not  normally 

This  problem  should  not  lie in the C code as the  function  it  performs is fixed, in tha t  all matrices 
have  been  specified. If they  are  passed  correctly  everything  should  work.  The  problem  must lie 
wi th   the   da ta   tha t  is being  passed to  the C :  functions. For instance  the  fitting  func  assumes  that 

function  should  be modified to ensure tha t  the  matrix is full  rank. 
the  design  matrix is  full  rank. If it is not,  the  problem is arising  on  the Splus side  and  the Splus 

3.1.3 Routines 

The Splus  rode  has  been  documented to some  extent  and  should b? faily self explanatory.  Copies 
of the  help files for frunc.fif and frunclnz.objecf are  included  Appendix C. T h e  Splus functions that 
are  needed  are: 

init.beta:  This  performs  an  untroncated  logistic  regression  to  find  initial  values  for  the  fisher 
scoring  algorithm. 
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no.groups:  returns  the  number o f  unique  elements in a vector 

setup.prop:  construct  model  matrix  and  response  vertor for proportional odds model  and  calls 
init .beta.  

trunc.fit:  Performs  the  actual  fitting 

is fairly basic, but is set  up  to  allow  the  use of the sutnmory() function in Splus. The setup is as 
T h e  following  routines  use  some of the  inheritance  mechanisms in Splus. This  implementation 

follows: 

1 .  lrunc.fit() produces  an  object of class  “trunclm” 

2.  pnnl.sur,rn,ary.trrrnrltrl and  su~,rrnary.Irunrhrr  are  implemented  along  the  lines of those for lm 
to produce  similar  output. 

These  functions  can be found as source in GTLI?funcs..S. 
The  C code is in 5 files: 

matmu1t.c : detines all the  matrix  routines . matmu1t.h : header fik for  the C routines 

fitfunr.r : defines all functions used  in the  fitting 

xb1ock.c : dqfines  functions  to  produce  the  design  matrix  and  response  vector 

minv.f:  invert  matrix.  (note  this is a Fortran  routine). 

There is also a makefile  listing  the  dependencies.  The  only  file  that  should be modified is 
matmu1t.h.  In  this file the  macro  variable tuazgroups can  be  modlfied  to  satisfy  whatever  space 

space  the  routines  take  up.  Note  that  the  routines  also  use  dynamic  allocation  and  are  not  protected 
requirements you may  have.  For  instance  lowering  maxgroups  lowers  the  base (ie fixed)  amount of 

against  out of memory  signals  from  allocation  requests. 
The  help  functions  are in the files: 

init.beta.d 

no.groups.d 

setup.pr0p.d 

trunr.fit.d 

trunc1m.object.d 

These  files  are  copied to t h r  .Help  sub-direc.tory tha t  is being  used,  without  the .d extension. 



3.2 Installation 
Installing  the  software  involves  three  steps 

1. Compilingthe  source  into  the  object  filefillrunclrr~.o  and  placing  it in the  appropriate  directory. 
This  directory is either  the  directory  that  Splus is run  from(which  from  here will be  referred 
to a5 “Sdir”)  or  an  appropriate  library. 

2. Sourcing  the  Splus  functions  (using  the  Splus  function source() to  the .Dolo  sub directory of 
“SDir”/.Dalo , or  to a directory  that is attached  (using  the  Splus  command aliach()). 

4 .  Copying  the  help files (without  the .d postfix)  to  the  .Help sub directory of whichever  directory 
the  Splus  functions were placed  in. 

Installation  should  proceed as follows: 

lJnix 

The  file  1runcpnrk.lar is a tar fik that  has two components, 

1. 1runrjif.lor contains  the  codp/iunctions. 
2. ~ r u n r ~ ~ . i n s l o l l r o n t a i n s  a simple  shell  script  to  install  functions  into a specified  directory, 

tha t  is ,  the  dirertory  that  Splus  wdl  run  from. 

Install as follows. 

1. Decide  on  the  dirpctory  that Splus is to  be  run  from, call it  “Sdir”. T h e  dlrectorles 
’.Ydzr/.Dala” and “.Sdir/.Dala/.Hclp“ hllJST  exist. 

2. LJnpark truncpark.tar by executing 

lor z j  trunrpnrk.lar 
this  should  extrart  the two files described  above 

3. Run  the C :  script by typing 
fruncfif.inslal1 “.Sdtr” 

whew  Sdir is defined a s  in (1) 

This  should  compile  the  code  and  copy  the  hdp  and Splus funrtions  to  the  appropriate  direc- 
tories. I f  you wish a different  setup  simply  modify  1runrfil.inslall. 
As an  example,  say  you wish to  install  the  software  in  the  directory 

/horr~r/slnll/barslai 

and  you  are  presently in 

/honr~/s io i l /bnr .~Lai / t repor! / les iawa 

all you need to do is mow 1runrpark.iar  to  your  present  dirdory  and  execute 

f o r  z j  1runrport.lar 

1runrfif.insloll / h o r ~ ~ ~ / s l a ! l / b a r s f a l  
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This will install  it  provided /ho~~~e/s la l f /bars la l / .Dalo  and /home/slalf/barslal/.Dala/ H e l p  
exist. 
The  other  option is to  install  the  code in a Splus  library, "Slib", say.  This is more  complicated. 
To do this use 

truncfi l . insfal i  "Shb" 

file filtrunc1m.o  is  dynamically loaded.  See Splus help for details  on dynamirally  loading  from 
You will then  have to modify lrunc.fif() or the  function .First.lib() to ensure  that  the  object 

libraries. 
When  you  run  Splus  you  may need to  run  the  funrtion help.findsutn('.Dalo") to use the help 
facility. 

Other  systems 
For  other  systems  the files are  parkaged  individually,  and A L L  funrtions mrluded as text files 

You will need to: 

1. Produce fillrunc1tn.o. This  will be  rompiler  dependent,  hut will ronsist of compiling 
each of the  source files to produce  objert files and  then  linking  these  together.  See  the 
documentation  for  your  machine  for  details. 

2. Copy  the  help files listed  above to the u.YDir"/.Dala/.Help dirwlory, dropping  the  d 
postfix.  See  the Splus function prontpl() .  

3 .  Start  Splus and us? the  function 'sourrrj)" to  parse  the Splus funrtions  trom GTLR- 
funrs.S  into  the  working  directory. 

T h e  makefile used for the  compilation  and  the  trunrfit.install  srript  are  printed in the  appen- 
dires.  These  should  give a general  idea of what  goes on, and how to extract f i l s  independently. 

3.3 Software  features 
During  the  testing of the  software  the  major  problem  that was ronfronted was the  situation  where 
the  data  is sparse  and as a result  the  model is not well specified.  In  this  case  the  Fisher  sroring 
algorithm  for  the  parameters will  not  converge  (although  the  fitted  values for the  probabilities will). 
This  can  be  diagnosed by examining  the  path of the log likelihood as output by lrunc.fif() .  If these 
estimates  fail  to  converge  then  certain  parameters  are  tending to infinity. The  partirular  parameters 
that  are  extreme  provide  information  regarding  the  terms  that  are  leading  to  the  problem. 

The  problem  occurs in this  binomial  regression  rontext  usually  due  to  the  sparsmess of data  for 
certain  combinations of levels of fac tors  For  example if there is only  one  observation  at a particular 

fits the  model  exactly.  Note  that  the  specification of the  logistic  model  causes  the  problem  to  cease 
level of a factor,  then  the  parameter  estimate  for  this level will go  to + or - infinity, so that  the  data 

as the  size of the  data  set  grows 
One way around  this is to  choose  levels of factors  surh  that  it  does not happen.  The  problem 

for  the  asymptotic  behaviour  of  the MLE estimators.  Eence  any  inference  that is made  must be 
with  this  is  that the rerursive  nature of this  approach is incompatible  with  the  assumptions  needed 

interpreted  rarefully. 

rank. In this case certain  parameters  are  not  identifiable,  This  problem  can  arise  for  various  reasons, 
Another  problem  that  may  arise is tha t  Splus may  produce  design  matrices  that  are  not of full 
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but  the  most  usual  is  from  using  crossed/nested  terms.  In  this case if some levels of a factor  do  not 
occur at levels of another  factor  Splus will still  incorporate  this  nested  parameter  into  the  model 
matrix. If this  problem  arises it is recommended  to  rewrite  the  function to modify (ie remove  non- 

and solve(f(design.nla1) % * % desrgn.mnf) to detect  singularities is recommended. 
identifiable  columns)  the  design matrix before it is passed to the C routines.  The  use of browser() 

If the  routine  continually  crashes  on  large  datasets  it  could  be a problem  with  memory.  The file 
n d t n u / f . h  contains  the  macro  variable mazgroups which should  be  modified  and  the  the  routines 
recompiled. 

4 Examples 

4.1 Introduction 

and  technical documentation included in the  appendices. For pedagogiral reasons, the  examples 
In  this  section the  use of the software is demonstrated.  Reference  shonld  be made  to the  help files 

are very detailed.  There  are of course  alternative  (and  more  preferable) ways to  perform  the  data 
manipulations. All references to  Splus  functions  and  output is in i ln / l r s .  The  data  set  used  in the 
examples is the  same as in the  online  help for the  function lrunr.jil(). For information  on th r  fitting 
of statistical  models in Splus see  Chambers k Hastie (1992). 

4.2 Example 1 

(:onsider the following data:  

> r e s p o n s e [ I ]  n r c a b a  a b n b r n b c b a a b r h 

> bell 

[ 1 ] 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0  

> age 
( I J I L Y ~ 5 6 7 a 9 1 ~ 5 ~ 5 6 7 8 9 l ~  

> group 

f i J I I I l I l l l l I ~ ~ L ~ ~ ~ ~ ~ L ~  

> 

where  all  data  is  either  simple  numeric  or  simple  character 
We may consider  this  to  be a sample of fatal  accidents  where bell is an  indirator for whether  the 

person was wearing a seatbelt (]=yes, O=no) and age is their  age.  The  vector group determines  to 
which accident  the  individual  belongs. The  response variable  is  coded as: 

1 .  a = uninjured 

2. b = injured 

3. c = killed 

Assume  that   the  data w a s  observed  given  that at least  one  individual died in  the  accident. If we 
wish to fit the trunc.ated  model to  this  data we must  manipulate  it  into  the  correct  Splus  formats  for 
lrunc.fii(). Suppose  that  for  the  above  two  accidents we only  want  to  model  the  probability  ofbeing 
killed in the  accident.  Then  the  model  is a truncated  logistic  regression  model,  and by definition 



the  response  is  either  killed, or not  killed.  Hence we must  modify  the  vector  response by assigning 
all observations  with a response  different  to killed to  another  factor as follows: 

> response2 < - response 
> indez < - responsrL?!= “E” 

> rcsponseL?[indcz] < - ‘no1  ktlled” 

> response2 
[ I ]  ‘not  killed” “c“ “c” “no1 killed”  “not krlled” 
[6] ‘not kdled” ‘not killed“  ‘no1  killcd“  “not  krllrd”  ‘no1 klllrdn 
[ I l l  *c” ‘not  kdled” ‘no1 killed” “c” “not  ktlled” 
[ la]  “not killed“ “no1 killrd“ ‘not  ktlled” “r”  9 1 0 1  kdled” 

To logically fit a truncated  ordinal  model  thr  response  must  be  ordered. We thus 11se 

> response!! < - ordr red ( r~spons~~ , lp~’ r l s=c (Yno t  killed”, “r”)) 

> responsr!! 
[ I ]  no1  killed r c nul killed no1 kzlled  no1  killed 
171 no1 killed no1  killpd  no1 kdled not  ktlkd c not hilled 
[13] no1 killed c no1 hdled no1 ktlled no1 L i l l p d  no1 krllpd 

[ I S ]  c not ktlird 
no1 killed < r 

obvior~sly  want  to  fit it as a  iactor. II we also wish to use treatment  contrasts in the  construction of 
To generate  the  ordered fac.tor. If belt is an  indicator  variable  for  the  use of a  seat  belt we 

the  design  matrix we can do  this as follows: 

> bell/ < - facior(bel1) 

> ciass(be1ff) 
[ I ]  ‘factor” 

> bel t1  < - C(brltf,ltrealotenl) 

For  information  on  the use offactors  and  contrasts  see  the  online llelp or   Chambers  F; Hastie (1992). 

argument to frunr.fil() is a formula.  In  this  example we are  interested in rnodellrng  rrsponse2 in 
We are  now in a position  to fit the  model.  Examining  the  documentation we see  that  the  first 

terms  of  beltf  and  age.  We  express  this as 

msponsr2 -bellf+agr 

it.  The  function trunc.fil() experts  that all variables in the  model  formula will be  on  this  frame, as 
The  second  argument is a data  frame. As we do  not  have  one at this  point we must  construct 

well as the  variable  identifying which group it belongs to.  We thus IISP 

> rzont l .  frame < - datu. frume(response2,  brlf/,age.group) 
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The  next  argument  is  the  tolerance. We will, as an  example,  set  the  tolerance to .OOOOOl. By 
examining  the  convergence of the  loglikelihood  [output by frunc.fil()) we can  asses if this is sufficient. 
The  next  argument is the  number of iterations  that we will run  for  before  terminating. If the  model 
is well specified  convergence is rapid  (in  our  experience in 4-8 iterations).  We will set  this to 20. 
The  next  argument is groupvar.  In  this caFe the  name of the  group  variable is in  fact  “group”,  and 
so we use this as the  argument.  The  next  variable is trunc,  the  point at which  the  the  distribution 
is  truncated. In  this  case  the  data were only  observed given that  some one died in the  accident. 

truncation  point is level 1 ,  or  “not  killed”.  Examining  the  help  documentation we can  use  either 
Being  killed  is  coded as uc’’ in  the  response  vector,  or is the  second level of the  response.  Thus  the 

trunc=l or  trunc=“not  killed“. 

routine  to  choose its own  slarting  value. We thus  use 
The  last  parameter is ,the  initial  value of beta.  This  parameter is optional so we will allow the 

> prarrr.fif1 < - frunc.fil( forrrlula = rrsponsel’ - brllf + aqr , dala  = erarri l . frame,  
loleranre = .000001 , zlrr=?O,  groupaar = -group”, frunr = ‘ n o i  h l l e d ” )  

-8.890799 

-8.882969 

-8.882967 

-8.882967 

Note  the  convergence of the log likelihood.  Examining  the  fitted  model: 

> ezani.fi11 

$call: 

lrunc.fil(/ornlula = rrsponsr2 b r I 1 J i  age, d a f a  = eznml.Jrarrw, ioleranrr = 
l r -06 ,  i l r r  = 20, groupvar = ugroup”,  lrunr = ‘no1 ki l led”)  

Sfiflrd: [ I ]  0.4689223 0.518909./ 0.7008293 0.7911075 0.8213./61 0.907688  0.92?616 

[X] 0.950./274 0,9761095 0.3961386 0.5159058 0.698592I  0.789545 0.858243 
[ t5]  0.9069980  0.9400892  0.9618748  0.9683336  0.3916230 0.515905 
Ovariancc: i l]  2J k 31 
[l,] 1.3165525 0.3729987  0.22590995 
[2,] 0.3729987 1.4752376‘ -0.10944208 

[3,] 0.2259099  -0.109./42t  0.08691102 

$r: I, 11 k 21 I, 31 
[ l , ]  1 - 1   - 1  

[2,] 1 0 -2 

14J 1 - 1  - 4  
[J,]  1 - 1  - Y  

[5J I 0 -5 
IS,] 1 - I  -6 

[77] 1 0 “7 

[i,] 1 0 -8 
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[9,] 1 - 1  -9  

[lo,] 1 0 - 1  

[ll,] I 0 - 2  
[12,] 1 - 1  -3 

[14,] 1 - I  -5 

[16J 1 - 1  -7 
[17,] I - 1  -8 

[ l X , ]  1 0 -9 

[20J 1 0 -2 

[13,] 1 - 1  -4 

[15,] 1 -1 -6 

[19>] 1 0 - 1  

Xcoefirrcnls: 

modeI.coefl  bel l f   agc  

-0.7919592 -0.2X1752 -0.4737266 
82: 

[ 1 ] 1 0 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1  

[1J -0.036~8064 
[2,j 0.15549389 

8linmr.pred:  [?I] 

[3J  0.91097248 
[4J  1.98469904 
[5,]  1.57667357 
[6,]  2.33215216 
[ z]  2.52412669 
[X,]  2.9g7x5325 
[9,]  3.75333184 
[IO,]  -0.31823267 
[ l l z ]  0.15549389 
(I?,] 0.91097248 
[13,] 1.38469904 
[14, j i.85842560 
[15J 2.33215216 

[lb',] 2.80587872 
[17,]  9.27960528 

[lX,]  3.47157981 
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[19J -0.918?3?67 

[20,] 0.155/9389 
%log.lik: 

[I] -8.882967 
%iterations: 

111 I 
$tolerance: 

[l] 3 . 1 0 8 1 1 ~ - 0 7  
%/rame:  response?  bell/  age  group 

I ’noi  killed“ “I” ‘1” ‘ I ”  
., 0 “ t  

I 3 1  

*, “ ,, Y,)” Y n 

yc, ,  “ ,, “ . I ,  v >> 

4 ‘not  killrd” “I”  “4” “ I ”  

5 -no1 killed” “ O n  ‘5” ‘I” 
ti ‘not  killed” ‘ I ”  ‘6“ “ I “  

7 ‘no1 killed” “0“ ‘7” ‘I“ 
8 ‘not  killed” ’0“ ‘8” ”1” 
9 ‘not kaIIPd” * I ”  ‘9” ‘I” 

I O  ‘not  killed” “0” ‘1” ‘1” 
1, Y E ”  “0” “2” “‘” 

I!? Inot  killed” ‘1” ‘9” “2“ 
IY “no1  kllled” ’ I ”  “4’ *2” 

Y C ”  ” n e r n  U 2 ”  I d  

15 ‘not  killed” ‘ I *  “6” “2” 
16 ‘not  killed” “I” ‘7” “2” 
17 ’no1 killed” ‘1” ‘R” ‘2” 
18 ‘no1  krlled” “0”  ‘9“ ‘2” 
19  “ C n  U I ”  “ O D  

20 ‘not killrd” ‘0” ‘t‘” “2” 
attr(, ‘class”): 

[I] Y r u n c l n ”  

I 

A more convenient summary is found 

> sutrlrrloly(rznln.fit1) 

Call: irunc.fi l( /onnula = response? - bell/ + age,  daia = Pzamt.framr, tolerancr 

= lr-06, i i e r  = !?#, groupvar = “group”,  trunc = “no1 killed”) 

Residuals: 



Min 1Q Medlon S Q  Maz 
-0.8582  -0.07999  0,06865  0.2093  0.6039 
Coef ic ients :  

V a l u e  Sfd.Error :value Pr(> 1.1) 
m o d e l . c o e f f  -0.i920 1.1474 -0.6902 0.4901 

bel t f  -0.2818 1.2146 -0.2320 0.8166 
age -0.4707 0.2948 -1.6069 0.1081 

nlodel.coe f f belt f aoe 
model.coe f f 1.0000 0.2676  0.66?8 

belt f 0.2676 1.0000 -0.3056 Cormlalion: 

. .  

Log likelahood: 
[ l ]  -8.883 

The  parameters  have  there  usual  logistic  regression  interpretation as log odds  ratios,  keepingin  mind 
the following. 

We are  modelling  the  probability of the  response  being less than a certain level. In  the  logistic 
case, if p is the  probability of death,  we are in f a d  modelling 1-p.  

The  design mat r ix  is constructed  based  on  the  negative of the  covariate  design  matrix  See 
Appendix E. 

The  interpretation of parameters  relating  to  factors will depend on the  contrasts  used 

for an individual at the  top level is then 
For this  example brllf w a s  incorporated  into  the  model rising t~reatment  contrasts. The  odds of dying 

odds f o r  Ieurl I of   be l t f  = probnbdz ly   d ie   g iven  leve l  1 
probabi l i ty  don't d i p  g iven   l ev r l  1 

We are  modelling  the  probability of not  dying so 

probnbi l i fy  don't die at levrl  1 = CZP(c,'+ ,2818) 
1 + rzp(C + ,2818) 

Where C depends on the  other  factors,  and  the  negative  value  arises due to  th?  negative  value of 
the  design  matrix.  Thus 

I 
I + c z p ( C + . ? 8 1 8 )  

l+esp(C+.2818)  

odds f o r  l end  1 of  belt f = ~= c+.1818, 

= m p ( - C  - 2818) 
Similarly 

odds for  level 0 of  belt f = r z p ( - C )  

So it follows t h a t  

odds r a t i o  = e z p ( - C  - ,2818) 
ezp(-C) 

= r z p ( - 0 . 2 1 8 )  

SO 

log(odds ratio) = -0.218 

ie individuals  with  bellfat level I have a lower probability of dying. 
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4.3 Example 2 
In this  example we will  fit the full ordinal  model to  the da ta  from example 1.  We thus need to 
construct a new  data  frame.  Assuming  beltfstill  exists  and  response  holds  the  responses we use 

> response < -ordered(rcsponsc) 
> etam2.framc < -data.frame(response,kllf, age,  group) 

the  truncation  point is “b”,  or 2. We thus use 
We can now call  the trunc.fiL(). Assuming the  data  w a s  only  observed if someone  died  in  the  group 

> etam.jii2 < -trunc.fiL(/ornlula = response bell/ + age, data = ezarn?.franre, 
tolerance = le-06, I t e r  = 20, groupuar = “group“, lrunc = ‘ b ” )  
+ -18.357277 
-18.002097 
- 17.9925Rb’ 
-17.992529 
-17.992528 
- I  7.992528 
-17.992528 
-1  7.992528 
- 17.992528 

It h a s  obviously  converged  with  this  tolerance. As the  rompletr  output would br long  and  mrssy 
we use  surrmarq(). 

> s u ~ l L I ~ ~ a ~ ~ ( r ~ a r ~ ~ , j i t 2 )  
Call:  irunc.jil(Jonuula = rrsponsr bpltf + age, data = ezarn2.Jrarne. tolrranrp 
= ir-06, i t r r  = 20, groupuar = ‘group”, trunc = “b’)  
Residuals: 
Min 1Q Median S Q  M a t  
-0.9146 -0.3775 0.05862 0.22RS 0.6868 

Vnlue ,Std.Error ; d u e  Pr( ‘ 121) 
nlodel.coeff  -2.6i9i 1.1854 -2.2607 0.0238 

Coeficienfs. model.coeJf  -0.6199 1.0261 -0.6041 0.5458 
belt f -1.6803 0.9429 -1.i821 0.0747 

nge -0.2i.37 0.1764 -1 .5517 0.1207 
Correlation: 

model.coe f  f 
nlodel.coeff n:odel.roef f beltf ngr 

1.0000 0.7898 0.5132 0.7482 
nwdPl.coef f O.i.898 1.0000 0.3758 0.6872 

brlf f 0.5132 0.3758 10000 0.0182 
ngc 0.7482 0.6872 0.0182 1.0000 

Log likehhood: 
I l l -17 .99  

Note  that  there  are now two intprrepts,  corresponding  to  the  three Ipvels of the  factor. 
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5 Summary 
The  a im of the  seeding  grant  was to provide a computer  implementation of the  new  statistical 
procedure  Truncated  Ordinal  Regression.  This  report  has  described its successful  implementation 
in  the Splus package  using a suite of C routines.  The  software  should  make  the  technique  generally 
available to road  traffic  researchers  who  have  access to the  package  Splus,  either  on U N l X  or in 
Windows. The  advantages of combining  Splus  and C: routines  are: 

The  Splus  model  language is used for  the  design  aspects of the  regression  problem. 

The  Splus  generic  functions  can  be used to extend  the  functions  and  make  them  user  friendly. 

The  computationally  intensivr aspec.ts of the  procedure can be  relegated  to C :  

Because of the  division.  the  resulting  software is both very efficient and very  rich in the  types 
of  model  strurtures  that  c a n  be  fitted. 

The  speed  of  the  software is such  that it can  he used as a prirnitivr in such  procedures as 
stepwise  model s d d i o n ,  bootstrap  and  non-parametric  modelling 

Now tha t  a package is available  to  perform  TOR,  it  can be applied  to a variety of road  traffic  accident 
databases by interested  researchers. It will improve  the  accuracy of the  estimates  and  conclusions 
and allow  more  general  questions to b r  posed. 
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Group Truncated  Ordinal Regression 
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Abstract 

O'Neill (1992) proposed  truncated  logistic  regression  as an alternative  to  conditional 

logistic  regression  (Breslow and Day,  1980)  which has previously  been  used for the  analysis 

of truncated  binary  data  (Lui,  Rhodes  and  Pollock,  1988). This paper  extends  mncated 

logistic  regression to truncated  ordinal  regression. This is important  since  conditional  logistic 

regression  does not extend to ordinal  data. 

* Keywords:  Truncation,  Conditional,  Logistic,  Ordinal. 



1 .  Introduction 

This  paper  considers the modelling of ordinal data from groups  subject to mncation. 

As an example consider an ordinal scale  for injuries sustained in a motor vehicle  accident: 

1 - no injury 

2 - injury 

3 -died subsequent to accident 

4 - died immediately, 

and suppose  that  data  is only available on accidents  involving  a  fatality.  Then the ordinal 

responses  for all individuals in a given  accident  are  observed if and only if the maximum 

response  over the group is at least 3. We  call such data,  group  truncated  ordinal  data. For 

binary  data  only  group  truncation is meaningful  since  ordinary  truncation would  imply 

degenerate  data.  ONeill & Barry(1992)  recently  proposed  truncated  logistic  regression  as an 

alternative to conditional  logistic  regression  which has previously been used for  truncated 

binary  data  (Lui er al., 1988).  The aim of  this paper is to extend the methods of ONeill  (1992) 

to  ordinal  data. This is important  since the conditional logistic model does not extend to either 

different  link  functions or true ordinal data. 

In section  2  conditional  logistic  regression i s  briefly  reviewed and it  is  shown that it 

depends  crucially on the assumption of a logistic  link and that  it  does not extend to ordinal data. 

In section 3 the  estimates  for group truncated  ordinal regression are derived. 



2 .  Conditional  Logistic  Regression 

In this section we review  conditional  logistic regression and its  possible  extension to 

other link functions and ordinal  regression. In conditional binary regression, the conditioning 

event is  the  number of responses  greater than 1 where 1 indicates  a null response  and 2 a 

positive  response. In general, for  ordinal data with ordered  responses 1, ..., k+l  and  a  group 

of size n, the conditioning event would be the number of responses C = c which are greater 

than 1 where 1 5 k.  Now if 9l denotes the set of individuals i n  the group, then 

where is the  set of all subsets of 9l of size n - c and y,l,...ya is  the set of cumulative 

probabilities of categories 1 ,  ..., k for individual i .  ie y,, is  the  probability  that  individual i's 

response is less than or equal to categoryj. 

Following McCullagh and Nelder (1989) we consider link functions of the form 

wherexi is the covariate  measured on individual i. Then if g has inverse h, 

and if y is the set of observed  levels, 



Now  if k = 1 and g is the logistic link, then we have conditional logistic regression and 

Where 3m-c = { i:y, I P }  ,the set  of reponses less than or equal to 4. 

The fact that the group  level  effect  does not appear in (2.2) is the primary  reason  for the 

popularity of conditional  logistic  regression.  However the removal of the group  level  effect 

only  occurs for the logistic  link and  for k = 1. It is a simple matter to check  that the 8's do not 

cancel from (2.1) fork > 1, even  for the logistic  link.  To  check that cancellation  implies the 

logistic  link  for k = 1, takef= h/(l-h). Then  cancellation must apply for  groups of size 2 

where  the  individual  with  response 1 hasx = 0. So 

where m(J is some  function  and ql = P,x for  the individual  dead,  or 

where mr(J is  a  function of m(). Taking 8 = 0, we obtain 



This  has solution f (  77) = exp(a + bq) for a and b which implies  that  the  link  function is 

logistic. 

In generalized linear  modelling,  we  are used  to the inference being fairly  robust to the 

link  function, so it is  a  matter of some concern that the inclusion of group level effects in the 

conditional  likelihood  is  determined by whether or not the logistic link function is assumed. 

Also. even if the  logistic  link is assumed, the property of no  group  level  effects in the 

conditional likelihood is not preserved when  we split categories. 

Because  of these problems with extending  conditional  logistic  regression  to  ordinal 

responses  and  other link functions, it is necessary  to  consider the extension  of  truncated 

logistic regression to group truncated ordinal data. 

3 .  Group Truncated  Ordinal  Regression 

Since the likelihood equations for group truncated ordinal regression are very similar to 

those  for  conventional ordinal regression,  we begin with  a brief summary of the standard 

results  presented in McCullagh and Nelder (1989). We suppose that for  each of N distinct 

experimental  situations,  there  are  cumulative  frequencies z i l ,  ..., zik for the mi individuals 

observed. So zij  is the number of individuals with response  at  most j and E(z i j )  = ‘y.. 
11 

Following McCullagh  and Nelder (1989), we consider link functions of the  form 

wherexi  is the p  x 1 vector of covariates  for  observation i. 

Let 

Dj = diag - = diag(1 / g’( y*)) (:;) 
where  diag(aiJ) refers  to  a k x k diagonal  matrix with jth diagonal  element  a,J. 



for the logistic link and 

where T i  is symmetric. Then T i  has a tri-diagonal inverse with enmes 

where T:* refers  to the element in row a, and column b, Of T i .  

Then  for the sample of size N ,  let 

D = Bdiag(D,), r = Bdiag(T,) 

M = diag(m,) @I I ,  z’ = ( z ; ’  ... ’ z;) 

Where  Bdiag(a,J is  a  block  diagonal  matrix, with ith block a,, I ,  is the k x k identity 

matrix, and e, is a k x 1 column  vector of 1’ S, 

and 

x ’ = ( x ;  , . . . , x ; ) .  

If 



then the score functions are 

o,e = M P ( Z  - M Y )  

and 

where Da is the vector differential  operator Da f = [$ / de, ,  a f  de,,  ..... ,?f . The 

Fisher information is 

3(p) = X'DMT- '   MDX.  

So the Fisher scoring method is 

where 

w = D M I - I  MD 

or if = X p ,  it is  a weighted linear regression of 

f i  + (MD)"(z  - M y )  on X with weights W .  

Subsequently in this discussion we will assume that M = I ,  that is we do not aggregate Over 

individuals. Consider for the moment a single group subject to rmncation and for clarity suppress 

the i subscript. Then the likelihood for the observed group is 



i s  the probaility of observing the group. Now 

= - { Q ( P , X )  1 P(P,X)}X'DEr. /" 

where ET = I @  E l l  where E l l  is the k x k matrix with one in the 1.1 position  and zeros 

elsewhere and I has dimension the number i n  the group. Also is the vector of inverses Of the 

elements of y. So the score function for the group is 

But thejth element of the vector 



Now for j I L 

E ( z j  I observed) = Pr(y  I j ,  observed) I Pr(observed) 

and for j > 1 

E ( z j  I observed) = P r ( y  > j ,  observed) / Pr(observed) 

= 1 - P r ( y  > j )  / Pr(observed) 

= 1 - (1 - y,) I P ( P , X )  

= Y! 1 P(P,XJ - Q ( p j X )  1 P ( P r X ) .  

So the score statistic for p is 

U&X) = UT = X'Dl-"(z-p,) (3.2) 

where pLr is the mean of an observed z given that it is  subject to mumtion. Now if we use 

Fisher scoring to estimate p, then we require 



But 

where V,(P,X)  = V ,  = Var(z I observed).  The diagonal blocks of this variance ma& contain 

the covariance of  the response  vector within an  individuals  response.  These  are  analagous to the 

r mamx in the  non-truncated  case. Now for individual i ,since  for j 5 j' 

E ( z j  zi. I observed) = E(z,. I observed), 

it follows that  the j j '  entry of the diagonal blocks of V T ,  for j 2 j '  is 

In a departure from the non-truncated model, the truncation causes the responses between 

individuals in a group to be correlated. As defined  previously  let Z i l .  ..,Zik be the response for 

individual i in  the group.  Thus for two individuals, i and j , calculations  analagous to  those 

above lead to: 
7 



and for a 2 e, b > P 

It is thus straight forward to complete the off diagonal blocks of VT, given that the conditional 

expectations are known. 

Hence  for N truncated groups using the extended  definitions of X ,  D ,  l" and z in (3.1) and 

letting 

where 

e j > e  

j j s e  
where j A e= 

and 

V ,  = Bdiag(V,T) 



we  have that the general  score  statistic and Fisher  information  are also given by (3.2) and (3.3). 

So the Fisher scoring algorithm for the estimation of p is defined by the equation 

The  behaviour  of the estimate will  depend crucially on the condition number of X’DT”VJ”DX. 

In the next section the impact of this on the efficiency is discussed. 

i 
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Abstract 

Truncated  binary  data  occurs when a  group of individuals, who each  have a binary response, 

are  observed only if  at  least  one of the  individuals has a positive  response. This paper  considers the 

regression  modelling  of such data when covariates  are  also  observed  and  quantifies the loss of 

efficiency  that  can  arise  from the truncation. Although  the efficiency loss compared to unuuncated 

data  can be substantial,  viable  estimation  is still possible  with  truncated  binary  data. An alternative 

procedure  called  conditional  logistic regression  (Breslow and Day, 1980), which  conditions on the 

actual number of deaths, has been previously used for this type of data. Truncated logistic regression 

is computationally  simpler than conditional  logistic  for  groups of size  greater than two  and is shown 

to be considerably more efficient generally.' 
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1 
Introduction 

This  paper was motivated by a call for tenders for the analysis of the 1988 Fatal File. This is a 

file  compiled by the Federal  Department of Transport and Communications in Ausualia and consists 

of records of all road  traffic  accidents involving fatalities in Australia in 1988. The aim of the 

proposed analysis was to examine the effects of covariates such as for  example  seat position, seat belt  

usage, size  of  vehicle, on the  probability o f  death in a  road  traffic  accident. One  obvious  problem 

with this  data set is that we only see the accidents involving fatalities. So we only observe the binary 

variables  for  death for individuals involved in an accident if at least one of the  binary  variables is 1. 

This truncation means that  standard logistic regression is no longer appropriate and different methods 

must  be used. The truncated  logistic likelihood considered in this  paper  allows for the correlation 

induced between individuals involved in a given crash. 

Conditional  logistic  regression has been previously  used in this  area by Lui er . a /  (1988) to 

analyse data  from  the Fatal Accident  Reponing System. They restricted their  analysis to two vehicle 

accidents  where  each  vehicle had a single occupant and exactly one fad i ty  resulted. It is obviously 

possible to genemlise  their approach to multi-occupant, multi-fatality crashes, but the simple nature of 

the conditional  likelihood is not preserved and computational  difficulties result. Some  approximate 

methods of maximising the resulting conditional likelihood are discussed in Thompson  (1991).  The 

truncated  logistic  likelihood is no more complex for  multi-occupant. multi-fatality crashes.  Further, 

since it is only  conditioning on  at least one death, it will clearly be more efficient 

The aim  of  the  present  paper is to show  that  truncated  binary  regression is feasible 

computationally  and to  show  that the truncated  data contains a large  component of the total 

information  compared to untruncated data. This  paper  also  evaluates the efficiency of conditional to 

truncated  logistic  regression for several  examples and shows  that the efficiency losses using 

conditional  logistic  regression  can be substantial.  Since  the  truncated  likelihood is also 

computationally  simpler, it should often be preferred to conditional logistic regression. 

There is a large literature on truncation models  where the response yi for an individual is only 

observed if yi 2 ci where ci is some known constant. Some recent  examples  are  Lagakos, Barraj 

and De  Gmtta (1988) who consider truncation models for AIDS survival data and Hodoshima  (1988) 

who  considered  the  effect of truncation on the identifiability  of  regression  coefficients.  The  present 

example is believed to be non standard since rather than an individual being observed if and only if its 

response  achieves a certain  level, a group or cluster is observed if and  only if the  maximal  response 



2 
over the group  achieves a specified level. Hence the truncation here is novel and standard truncation 

likelihood formulae do not  apply. If the only covariate  indicates a dichotomous treatment. then  the 

responses of the group form a 2 x 2 contingency table where the total dead is conditioned to  be at 

least one. Various  examples o f  estimation for constrained contingency tables using quasi likelihood 

have been presented by McCullagh and Nelder (1989). The present  situation  however  does not 

appear to have been considered. 

Although the preceding discussion has k e n  couched in terms of road  traffic  data,  it is clear that 

there  will be  other areas o f  application. The likelihood  proposed in this paper will often  be an 

alternative to those proposed in  proband studies  (Thompson, 1986) if registered clusters are sampled 

on an  equally  likely basis. A possible  economic  application  might be looking  at  employment in 

families where at least one member is registered  unemployed. 

In section 2, maximum  likelihood  estimation of  truncated logistic regression is cclnsidered. 

Section 3 derives the efficiency losses that are caused by the truncation and conditioning. Section 4 

evaluates the efficiency losses for some examples.  Section 5 presents an analysis o f  some road safety 

data. 

2 .  The  Truncated  Binary Regression Likelihood 

In the following let 

yi = the response for the ith  individual in the cluster. 

X i  = the p x 1 vector of covariates specific to individual i .  

X=thenxpmat r ixwi thx i in the i th row.  

at = the set of individuals in the group. 

p = the p x 1 vector of regression parameters. 

Consider a group of size n subject to truncation. We suppose that a logistic  model holds for the 

individual  binary responses, 
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Note  that the covariates X may include  group level effects as well as individual  specific  covariates. 

For example in road  traffic applications X would include information on the vehicle and the severity 

of the crash. Then the log likelihood for a truncated group becomes 

where 

and = x denotes  summation  over the individuals in the group. 
at jeR 

Now  since 

where for truncated binary regression 

The sample information matrix from  the  group is thus 

ICP, X )  = ap'(P, X) 1 JP 



so 

(2.2) 

Hence letting 

r = xj yj 
at 

then for a sample of N truncated groups, the score function is 

and the sample information matrix is 

Thus a simple  Newton-Rhapson scheme can be used to find the maximum likelihood  estimate P via 

and the estimated  covariance of P is given by 
,% 
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Inference  can  be performed using the asymptotic normality of the maximum likelihood estimators. In 

addition model testing can be done in the usual way using differences of deviances. 

As a very  simple  case consider the folIowing example: 

Example 2.1: Psychiatric  data 

Cox and Snell (1989, p. 53) analyse  the  following paired comparison  data of Maxwell (1961, p. 28) 

on the  effect of a treatment on twenty three matched  pairs  of depressed patients. 

Table 3.1 Recovery of psychiatric  patients 

Response: 

Depersonalised Not Depersonalised  Number of Pairs 

0 0 

14 1 1 

5 0 1 

2 1 0 

2 

For illustration  purposes  only, we consider  truncating  this data by discarding  pairs  where 

neither  patient  responded. When a two  group model is fitted to the full  data we obtain  estimated 

logits of the probabilities  for the two groups of 327 and 1.558 with an estimated  variance matrix of 

When the two group  model  is fitted to the truncated data the estimated  logits are 1.030 and 1.950 

with an estimated variance matrix of 

It is worth emphasising that for the wncated data, the number of truncated groups is not known. 

The estimated  probability from the truncated fit of a group being  observed is .967 which  can be 
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compared to an estimate of .947 from the full data set  and an observed  frequency of 21/23 = .913 

of  non-truncated pairs. In the  next section, we consider the efficiency loss which arises from the 

truncation. 

3.  Efficiency of Truncated  Logistic Regression 

To compare the efficiency  of  the  truncated  model to the conditional  model we will assume that h e  

logistic model 

holds and that [he x;s are  known for each individual.  This  assumption is not  restrictive. For 

example, in the  case  of road safety data. logistic  regression would be a logical  initial  analysis 

technique. It is  only the truncation of the responses that precludes its use. What  this  is  effectively 

saying is  that the probability  structure  induced by the logistic  model  is appropriate. but  that the 

sampling  scheme is causing complications. 

In the truncated case, conditional logistic regression is used to avoid the difficulties  introduced by the 

truncation. This is different  to its use in, for example, matched casekontrol  studies  where its purpose 

is to remove  the  effect of group  level covariates. Of course, the use of conditional  logistic regression 

with truncated data will have the effect of removing the group level effects,  but if these effects  can  be 

adequately  modelled by the logistic model  then the technique will be less efficient. In this section this 

efficiency  loss is quantified. 

In the following  the  efficiency will be compared on a prospective basis. This is done so that the 

methods are  compared with respect to a common  sample space. The  underlying  sample  space is 

baed  on grouped, bur not truncated data. The term prospective  relates to the  expected  information 

provided by a group  drawn from this  sample  space. For example, if the group contains no deaths it 

provides no information to the truncated likelihood. 



If the  group of individuals is not truncated, then the sample  information is equal to he Fisher 

information and is 

I 

while the Fisher information from a (possibly unobserved) group subject to truncation is 

Next  consider the information loss due to conditioning. Consider the group at of n 

individuals for which xli = (u’, vli ) where u’ is constant over the group  and only vi varies. If rn 

deaths are observed, the conditional logistic likelihood is 

and S =  C xi. s, = x VI 
observed dealhs observed deaths 



and 
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and atrn is the set of  subsets of  of size m. The  likelihood  (3.1) is identical to the Cox 

Proportional Hazards Likelihood (Cox 1972,  1975, Efron 1977). Then the sample information for 

estimating p2 in the  conditional  logistic  likelihood is Vm( p2 ,X), the  variance of S, given the 

probability distribution (3.1) over a t .  Hence since by assumption u does not vary over a t ,  the 

sample information  for  estimating p is Vm( p ,X), 

the variance of S given the probability distribulion (3.1). So, letting 1JX) = 9,(p, X) denote the 

Fisher  information matrix for p from the conditional logistic likelihood, we have 

0 0 
x = ( 0 "c.z2(x)) 

where 

where P,(p, X) is  the  probability that m deaths are observed in the group. X) is thus the 

expected,  with  respect to the distribution of M, information  from the group. 

Let M denote the actual number of deaths in the group and 

the Fisher  information  in m deaths  conditional  on  there being at least  one  death.  This is the 

information in the conditional density of M I M L 1, 

pMIM,I(p , X )  = P r ( M = m l M h l )  
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Hence the expected  information from the 9, ,(X) component is 

Hence if we let F(X)  describe the expected  disrribution of X where X can be chosen  either 

stochastically or deterministically.  then for each type of information 9 ,  9,. gC and 9, i t  follows 

that 

9 .  = I S.(X)dF(X) 

and since 

We will now consider  measures of relative efficiency. With a scalar  parameter the choice of measure 

of efficiency is straight forward. With vector parameters the choice becomes less clear. 

We  will use as OUT measure of efficiency, when comparing method A to the less  efficient method B, 
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where 9~ and 9~ are  the information in the group using method A and B respectively and it is 

assumed that 9 ~ " 9 ~  is positive semi-definite. 

This has the obvious property that if 9~ = 9, the efficiency  loss is zero, and if 9, is a matrix of 

zeroes  the  efficiency loss is one. It is also invariant under transformations of the parameters. It can 

be viewed as the  approximate  average efficiency loss for the orthogonal parameterisation p' = 
g,"(P)P. This  parmeterisation will be orthogonal for method A. but is not necessarily orthogonal 

for  method B. 

With this definition the efficiency loss by truncation is 

As an overall measure of the efficiency of conditional compared to truncated estimation of p we will 

U s e  

However  we  note  that in the case when u never  varies  within a t ,  and thus the  information for the 

corresponding  parameters in the conditional likelihood is zero, 

where vi has length p2 The efficiency of conditional to huncated  estimation  of p2 is 

i.e. the  efficiency is only compared over the parameters that can be'estimated by the two methods. 

In section 4 we  evaluate these efficiency measures for two examples. 
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4 .  Efficiency  examples 

Example 4.1 : Two  group  problem. 

We consider the simplest  possible  regression  where the covariate, x ,  is an indicator 

variable for the second of one of two treatments. We also suppose  that  each  group  subject to 

truncation has only  two  members who get different  treatmenfs. A practical  example  might be the 

driver and front passenger  seat  occupant of single  vehicle  accidents  where the treatment  is the seat 

location and the accident is only  recorded in the fatal  file if a fatality  resulted.  Without  loss of 

generality we may assume that the design  matrix for the group is 

Now let 

pi =the probability that individual i dies. 

In Figure 1, we contour ET with respect to p1 and p2. Note that  although the efficiency  loss to 

truncation  can be substantial, the retained efficiency is always at least 50% and  viable  estimation is 

possible. Also, it  is  well known that  the  discordant  pairs  contain all the relevant  information 

concerning the difference between the two treatments or 

EC = 112, EC, = 0 

and so in this case,  conditional  logistic  regression  is  fully  efficient for the estimation  of p2 . 
However this is the only case where  conditional  logistic  regression is fully  efficient for estimating a 

subset If the group  size is ever  larger than 2 or X varies  across  groups, then EC, > 0. 

[Insert  Figure 1 about  here] 



Example 4.2 : Continuous covariates 

We now consider the case where 

1 2  

where x1 and x2 are chosen independently from the Uniform (0, 1) density. If  pi = p(p.  x+J and 

pZi = p(P2  xi) where 

Although 9, and 4, cannot be explicitly evaluated, they can be calculated by numerical integration 

for a range of p values. In Figures 2 , 3  and 4 we contour ET, EC2 and EC for  a  range of 

values of the intercept and slope parameters. It can be seen that truncated logistic is often very much 

more efficient than conditional logistic. It can also be Seen that the loss caused by truncation is not 

usually extreme. 

[Insert Figures 2, 3 and 4 about here] 
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This  section  examines the  effects of various covariates on the  probability of death for passengers 

involved in fatal car accidents. This analysis is based on the so called "fatal files" which are collected 

by the  Australian Federal  office of  road safety on a biennial basis. These  files  consist of passenger 

and  vehicle  information  for  all  fatal  accidents that occur in the target year. The analysis is based on 

the records for the 1988 and 1990 calendar years. 

The  aim  of the analysis  was to  estimate the effect of various  group  level  and  individual  level 

covariates on probability of death. To simplify the analysis it was restricted to single vehicle, frontal 

impact  collisions  that  involved passenger cars.  This  produced a data set with obxrvatinns on 306 

individuals  involved in 11  1  accidents. Note  that cars with  only a driver  are non informative  for all  

methods. 

From this data set the accidents involving a front seat passenger and driver were extracted for use in 

the conditional  analysis.  This data set consisted of information  from 76 accidents. While this analysis 

could  have been augmented by constructing the conditional  likelihood  for each car, the  following 

points  should  be  noted.  Firstly,  a large proportion of the accidents  involved  cars  with  driver and 

front seat  passenger.  Secondly the construction and  maximisation of the conditional  likelihood for 

varying  size  clusters,  though analytically  straight  forward,  would  be  complicated to numerically 

perform. Finally,  in the other  analysis  published in  this  area (Lui er a1 1988) the paired  analysis 

considered  here  was  performed. 

Although a wide  range of variables are available for each  individual, a subset was  chosen  due to their 

previous  association with fatalities in car accidents. See for  example the work of Evans(  1985) or Lui 

et a1 (1988). The variables selected are described in table 1. 

The  models  were fitted using the method presented in section 2 and the results are presented in table 

2. All covariates were treated as factors. and the  design  matrix  was  constructed using treatment 

(Chambers and Hastie  1992) contrasts. The  effect of the lowest level of each factor  was set to zero. 



[Insert tables 1 and 2 about here] 
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The agreement  between the two estimates is encouraging.  Although both methods  model the mean 

response  equivalently,  departures from the underlying  models,  such  as  missing  covaria[es, could 

cause  discrepancies to arise. Examining the standard  errors of the estimates  reveals  the  increase in 

efficiency that is achieved using the truncated model. 

6 .  Summary 

The results  found in this paper  are very encouraging for  the analysis of truncated binary data. 

They show 

Viable  regression  estimation using  the truncated  likelihood is possible when the binary 

variables of groups of individuals  are  only  observed if at least one is positive.  The 

resulting  likelihoods are well  behaved and tractable. The  truncated  likelihood also avoids 

the difficulties of the conditional likelihood (Thompson, 1991) when more than one death 

in a group is observed. 

The efficiency loss due to truncation although  substantial is not catastrophic. For larger 

groups the efficiency loss will be less. 

The efficiency of truncated versus conditional  logistic  regression has been  evaluated in 

several realistic examples showing that  the efficiency  loss in using conditional logistic  can 

often be high. 

The  choice  between  truncated and conditional  logistic  regression  for the analysis of group 

truncated  binary data will be governed by  the group level effects. If they  vary  systematically  across 

groups or clusters then truncated  logistic  should be used whereas for random or unstructured group 

level effects, conditional  logistic  should be used since it eliminates  all group level  effects. For 

example if the group level effects that affect the probability s t ruc tu~  of the response are known (ie the 

individual  probabilities can be adequately modelled) then truncated logistic regression is appropriate. 
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This appears the case with the road sdety data used in  the example. In this case  conditional  logistic 

regression has  been used to remove the biases introduced by the sampling  scheme.  It may be argued 

that  the  nature of the data  will  ensure that slight  unexplained  variation  between  groups  remains. 

While this  may be true, these slight imperfections are also true for most stochastic  models. 

Truncated logistic regression  provides  a natural framework  for the analysis of truncated  binary data. 

It utilises the full  likelihood, and is the logical  extension of the non truncated  case.  Because of the 

superior  efficiency and relative computational simplicity, truncated logistic regression  should  often be 

the  preferred method for truncated binary data. 
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Figure 1 :Efficiency Loss for Truncated 
Binary  Regression with Two Treatments 
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Figure 2:Efficiency Loss for Truncated 
Binary  Regression with Uniform Covariates 
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Figure 3:Slope Efficiency Loss for  Conditional vs. 
Truncated Logistic with Uniform Covariates 
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Figure 4:Efficiency Loss for Conditional vs 
Truncated Logistic with Uniform Covariates 
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trunc.fit () 

Fi t  a group  truncated  ordinal  regression 

DESCRIPTION 
produces  an  object of class trunclm which is the fit of a  truncated  logistic/ordinal  grouped 
regression. 

USAGE 
trunc.fit(formula,  data,  tolerance,  iter,  groupvar,  trunc,  initbeta) 

REQUIRED  ARGUMENTS 
formula: aformulaexpression as for other regression models, of the  form  response  predictors. 

See the  documentation  of  lm  and  formula  for  details. 

data: a  data  frame in  which  to  interpret  the  variables oc- curring  in  the  formula. See data.frame 
for  details. 

tolerance: The  required  tolerance  to  be used in the  fitting.  It  is  the  euclidean  distance  between 
the  fitted  expecta-  tions  from  one  iteration  to  the  next. 

iter: The  maximum  number of iterations  used  in  the fisher  scoring  algorithm 

groupvar: A character  string  giving  the  name of the  variable  on  the  data  frame  that defines 
the  group. 

trunc: T h e  level a t  which the  truncation  occurs  (ie  one  response  in  the  group  must  be  above 

of the level. 
this level). This  can  either  be  the  number of the  level, or a character  string for the  name 

OPTIONAL  ARGUMENTS 
initbeta: Optional  initial  value  numeric  vector for the  parame-  ter  vector In the  Fisher  scoring 

algorithm.  Otherwise  logistic  regression  estimates  are  used. 

VALUE 
an  object of class trunclm  is  returned. See  trunclm.object for details. 

DETAILS 
The  ou tput  can be  examined  using  print  and  summary. 

The  models  are  fitted  using  the  Fisher  scoring  algorithm,  and  the logistic  link is assumed 
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SEE  ALSO 
t r u n c h o b j e c t  

EXAMPLES 

”age”.  We  must  also  have a vector,  ”group”  say,  defining  which  group  each  individual  is  in. 
Say we have a response  vector  ”response”  with  three  levels  and  a  explanator  vectors  ”belt”  and 

We  would  then  use: 
>response<  -ordered(response) 
> 
t o  generate  the  ordered  factor. If belt is a factor  then we would  use 
>belt<  -factor(belt) 

Splus  generates  the  design  matrix by using  the  ”contrasts”  attribute of an  factors  in  the 
> 

> 
So we have 
> response 
[ l l a c c a b a a b a b c a b c b a a b c b  
a < b < c  
> belt 

> age 
[ 1 ] 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2  
> group 

> 
Last of all  construct  the  model  frame. 
>exam.frame< -data.frame(response,belt,age,group) 
> 

model  formula. To modify  it,  say  to  use  treatment  contrasts,  use  >belt<  -C(belt,treatment) 

[ 1 ] 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0  

[ 1 ] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2  

> ezam.fit2 < -irunc.fii(formula = response bclif t age, data = ezom.frame, 

tolerance = le-06, iier = 20, groupuar = “group’, i runc  = “6”)  
.f -18.357277 
-18.002097 

-17.992586 
-17.992529 
-17.992528 



- 1  7.992528 

-17.992528 

- 1  7.992528 

-17.992528 

I t  has obviously converged with this  tolerance. As the  complete  output  would be long  and messy 
we use  summary(). 

> summay(czam.fi~2) 

Call: irunc.fii(formula = response belif + age, data = czam&.framc,  ioleranc 

= le-06, Iter = 20, groupvat = Ygroup”, tmnc = ubb“) 
Residuals: 

Min 1Q Mcdian 9Q Maz 

-0.9146  -0.9775  0.05862  0.2283  0.6868 
Value S t d . E r r o r  rualue Pr(  8 Irl) 

Coeficicnfs:  model.coef f -0.6199 
model.coe f  f -2.6797 1.1854 -2.2607  0.0238 

1.0261  -0.6041 
beltf -1.6803 0.9429  -1.7821  0.0747 

0.5458 

age  -0.2737  0.1764  -1.5517  0.1207 
Correlation: 

mode1.coe f f model.coe f f belt f age 
model.coe f f 1.0000 
modcl.coef f 0.7898 

0.7898  0.5132  0.7482 

b c l t f  
1.0000 0.3758  0.6872 

0.5132  0.3758 1.0000 0.0182 
age  0.7482  0.6872 0.0182 1.0000 

Log likelihood: 

[I] -1 7.99 



trunclm.object 
Group  truncated  ordinal  regression  object 

DESCRIPTION: 
These  are  objects of class "trunclm"  which  represent  fits of group  truncated  ordinal regression 
models.  This class of object  is  returned  from  the  function  trunc.fit().  The  components can be 
extracted  using  the "$" operator. 

T h e  following  components  are  included  in  the  object. 

COMPONENTS: 
call: an image of the call that produced  the  object,  but with the  arguments all named  and  with 

the  actual  formula  in-  cluded as the  formula  argument. 

f i t ted:  the  expected value of the  response vector  under  the  fitted  model.  Note  that  this is not 
equal to the  fitted  category  probahilitys of the  non  truncated  model. These should  be 
found from %linear.pred. 

variance: the  estimated  expected  information for the  parame-  ters. 

x:  the  matrix of predictors  used  in  the fit. Note  that  the  number of rows of this  matrix is 
(number of levels of response - 1) * number of observations. 

coefficients:  the  fitted  regression coefficients. The  namm of the coefficients are  the  names of the 

T h e  "rnode1,coefficients" are the in-  tercept  terms.  There  are  thus  (number of levels of 
single-degree-  of-freedom  effects  (the  columns of the  model  matrix) con- structed by Splus. 

response -1)  "model.coefficients". The coefficients  have a one  to  one  correspondence  with 
the  columns of the  model  matrix. 

z: the  vector of responses  used  in  the fit of the  model.  This has the  same  number of rows a 
objectsx.  It is constructed  of 1's and zeros.  For  observation i,  z[i*(number of levels of 
response - 1) + j] = 0 if the response  for  individual  i  is  greater  that j, 1 otherwise. 

1inear.pred: the linear predictor,  ie  objectsx % % object%coefficients 

1og.lik: the  value of the  maximised  log.likelihood. 

iterations: The-number of iterations used in the fit. 

t o l e rance :   The  euclidean  diRerence  between  the  parameter  vector in the  last  two  iterations. 

frame: The data  frame used  in the  fit. This is  included  for cases where  the  group  variable  was 
not  sorted,  and  trunc.fit  performed  the  sort. 



"no. groups"<-  
f u n c t i o n ( g r o u p )  

num <- l e n g t h ( u n i q u e ( g r 0 u p ) )  
n um 

) 

f u n c t i o n ( f o r m u l a ,   d a t a ,   t o l e r a n c e ,  i t e r ,  g r o u p v a r ,   t r u n c ,   i n i t b e t a )  
' m t r u n c . f i t ' q < -  

I 
i f  ( ! ( is .  loaded  ("-fi tmodel") ) > I 

1 
i f  ( i s  . c h a r a c t e r   ( d a t a  [ ,  g roupvar l )  ) I 

t 

permute <- o r d e r ( d a t a I ,   g r o u p v a r l )  
nums <- l : n r o w ( d a t a )  

permute <- permute[  - nrow(data)  I 
sav.perm <- permute 

permute <- append(pemute ,  0, a f te r  = 0 )  
if (s;lm( (nums - permute) == 1) != n r o w ( d a t a ) )  t 

d y n . l o a d 2 ( " f i t t r u n c l m . o " )  

s t o p  ("group v a r i a b l e   c a n n o t   b e   c h a r a c t e r " )  

#is t h e   d a t a   s o r t e d ? .   I f   n o t   s o r t   a n d   w a r n .  

warn ing("da ta . f rame  no t   sor ted   by  group.  so r t ed   f r ame   r e tu rned   i n   $ f r ame  

1 
da t a2  <- da ta [sav .perm,  1 
c a l l  <- m a t c h . c a l l 0  
#se tup .p rop  sets  up s t a r t i n g   v a l u e s ,   d e s i g n   m a t s  etC f o r   t h e   # p r o p o r t i o n a l   o d d s  : 
d e r i v e d  <- setuu.proo(formula,   data .2)  

) 

. .  - 
new.X <- d e r i v e d l  I l l ]  
new.Z <- de r ived [ [211  
k l e n g t h  <- de r ived l [311  

paramnames <- names  (new.beta) 
new.beta <- de r ived [ [411  

i f   ( ! m i s s i n g ( i n i t b e t a ) )  I 

1 

i f  ( is .  c h a r a c t e r   ( t r u n c )  ) I 

new.beta <- i n i t b e t a  

# g e t   t h e   t r u n c   p o i n t  

temp. t runc  <- t r u n c  
t r u n c  <- ma tch ( t runc ,   l eve l  

dataZ),   "response")  
i f   ( i s . n a ( t r u n c ) )  

. s (model .extract(model . f rame(form~ ) )  I la,  

s t o p ( p a s t e ( " L e v e 1 :  , temp. t runc ,  
. .  . 

7, 

"is  no t  a v a l i d   l e v e l  f o r  t h e   r e s p o n s e " ) )  

t 
i f ( t r u n c  >= length( leve ls (model .ex t rac t (model . f rame(formula ,  da t aZ) ,  

t 

" response")  ) ) ) t 
s t o p ( p a s t e  (?'Level: ' I ,  t runc ,  

"is t h e   t o p  level+ f o r   t h e   r e s p o n s e   a n d  i s  t h u s   i n v a l i d   a s  a t r u r  
) )  

if ( t r u n c  < 1) 1 
s top (pas t e ( "Leve1 :  ", t runc ,  

"is below  the minimum leve l .   Leve l  go 1 , 2 , 3 . .  . " )  ) 
1 
num <- nrow(new.X)  /klength 
change <- 9999999 
dev <- vec tor ("numer ic" ,  1) 
r e s u l t  <- .C("f i tmodel" ,  

as .   double   (new.  X ) ,  
a s .  double  (new. Z )  , 
a s .doub le (new.be ta ) ,  
a s .  i n t e g e r  (nun) ,  
a s . i n t e g e r ( k l e n g t h ) ,  



as . in t ege r (n row(new.X)  ) ,  
a s . i n t e g e r ( n c o l ( n e w . X ) ) ,  
a s . i n t e g e r ( d a t a 2 [ ,   g r o u p v a r l ) ,  
a s . i n t e g e r ( t r u n c ) ,  
a s . i n t e g e r ( n o . g r o u p s ( d a t a 2 [ ,  g r o u p v a r l ) ) ,  
a s . d o u b l e ( t o l e r a n c e ) ,  
a s . i n t e g e r ( i t e r ) ,  
a s   . doub le   (dev )  

indexvec  <- l : l eng th (new.X)  
indexvec  <- indexvec <= (ncol(new.X) * ncol (new.X))  
r e t l i s t  <- l i s t  ( c a l l  = ca l l ,  f i t t e d  = r e s u l t  [ [ Z I  1 ,  v a r l a n c e  = (mat r ix  ( 

a s . v e c t o r ( r e s u l t  [ 111  I )  [ indexvec l ,  nrow = ncol(new.X) ) ) ,  x = 
new.& c o e f f i c i e n t s  = r e s u l t [ [ 3 1 1 ,  z = new.2, 1 i n e a r . p r e d  = 
NULL, 1 o g . l i k  = r e s u l t [ [ l 3 ] 1 ,   i t e r a t i o n s  = r e s u l t [ [ 1 2 ] ] ,  
t o l e r a n c e  = r e s u l t [  [ l l]] ,  frame = da t a2 )  

a t t r ( r e t l i s t S c o e f f i c i e n t s ,  "names") <- paramnames 
l i n p r e d  <- r e t l i s t S x  b*% r e t l i s t S c o e f f i c i e n t s  
r e t l i s t $ l i n e a r . p r e d  <- l i n p r e d  
f i t t e d  <- e x p ( l i n p r e d ) / ( l  + e x p ( 1 i n p r e d ) )  
i f   ( s u m ( f i t t e d  > 0 . 9 9 9 ) )  

w a r n i n g ( " f i t t e d  value close t o  1. Could mean parameter  estimates going  

1 
) 

i f ( s u m ( f i t t e d  < 0 . 0 0 0 1 ) )  I 
w a r n i n g ( " f i t t e d   v a l u e   c l o s e   t o  0 .  Could mean parameter   es t imates   go ing  

) 

a t t r ( r e t l i s t ,  "class") <- ~ ( " t r u n c l m " )  
re t l is t  

I 
"se tup   .p rop"<-  
f u n c t i o n ( f o r m u l a ,   d a t a )  

# t h i s   f u n c t i o n   c o n s t r u c t s   t h e  model  matrix  and  response vec f o r   t h e   p r o p o r t i o n a l   # o d d s  m 
model . te rms  <- terms(formu1a)  
mod.frame <- model.frame(model.terms, d a t a )  
model.mat <- model.matrix(model.terms, d a t a )  
model.mat <- as .matr ix(model .mat  1 ,  - 1 1 )  
model.mat <- model.mat -1 
response .vec  <- model.extract(mod.frame, " response")  
i f ( ! i s . o r d e r e d ( r e s p o n s e . v e c ) )  { 

1 
k l e n g t h  <- l e n g t h ( l e v e l s ( r e s p o n s e . v e c ) )  - 1 
evec <- vec to r ( "numer i c" ,   l eng th  = k l eng th )  
evec[l <- 1 
new.X <- m a t r i x ( 0 ,  nrow = l eng th ( re sponse .vec )  * k length ,   ncol  = 

x r e s u l t  <- . t ( ' " formxblocks" ,  

s t o p ( " r e s p o n s e  i s  no t   an   o rde red   f ac to r " )  

k length  + length(model .mat  [l, I )  ) 

a s .doub le (mode l .ma t ) ,  
as . in teger (nrow(model .mat ) l ,  
as . in teger (ncol ( rnodel .mat ) ) ,  
a s . i n t e g e r ( k l e n g t h ) ,  
as .  double  (new . X )  ) 

nco l  = k l eng th  + length(model .mat [ l ,  I ) )  
new.X <- m a t r i x ( x r e s u l t [ ~ 5 1 ] ,  nrow = l eng th ( re sponse .vec )  * klength,  

new.2 <- vec tor ("numer ic" ,   l ength  = k length  * l e n g t h ( r e s p o n s e . v e c ) )  
z r e s u l t  <- .C("formz", 

a s .doub le (a s .numer i c ( r e sponse .vec ) ) ,  
a s . i n t e g e r ( l e n g t h ( r e s p o n s e . v e c ) ) ,  
a s . i n t e g e r ( k l e n g t h ) ,  
a s  .double  (new. 2 )  ) 

new.2 <- z r e s u l t  [ [ 4 ]  ] 
new.beta  <- i n i t . b e t a ( d a t a ,  new.2,  klength,  model.terms) 
r e s u l t  <- l i s t ( n e w . X ,  new.Z, klength,   new.beta)  
r e s u l t  



) 
" p r i n t  .summary.  trunclm"<- 
f u n c t i o n ( x ,   d i g i t s  = max(3,   .Opt ions$digl ts  - 3 ) ,  . . . I  
( 

c a t   ( " \ n C a l l :  " )  
d p u t   ( x S c a l l )  
r e s i d  <- xSres idua l s  

rd f  <- df 
i f ( r d f  > 5 )  1 

df <- xSdf 

c a t   ( " R e s i d u a l s : \ n " )  
if ( l e n g t h ( d i m ( r e s i d )  ) == 2 )  ( 

r q  <- a p p l y ( t   ( r e s i d ) ,  1, q u a n t i l e )  
dimnames ( r q )  <- l i s t  ( c  ("Min" , "la",  "Median", "3Q", 

"Max"), dimnames ( r e s i d )  [ [ Z ] ] )  

e l s e  I 
r q  <- q u a n t i l e   ( r e s i d )  
names ( r q )  <- c("Min", "lQ", "Median", "3Q", "Max") , 

1 
p r i n t  (rq, d i g i t s  = d i g i t s ,  . . . )  

else if ( r d f  > 0)  { 
1 

p r i n t ( r e s i d ,   d i g i t s  = d i g i t s ,  . . . )  
ca t   ( "Res idua l s :  \ n " )  

) 

p r i n t   ( f o r m a t   ( r o u n d ( x S c o e f ,   d i g i t s  = d i g i t s )  ) ,  quote = F, . . . )  
c a t   ( " \ n C o e f f i c i e n t s :  \ n " )  

c o r r e l  <- xScov.unscaled ( l / s q r t ( d i a g ( x S c o v . u n s c a l e d ) ) )  
c o r r e l  <- t ( c o r r e 1 )  ( l / s q r t ( d i a g ( x S c o v . u n s c a l e d ) ) )  
dimnames ( c o r r e l )  <- l i s t  (dimnames (xScoef)  [ 111  I ,  dimnames (xScoef)  [ [ I ]  I )  
cat ( " \ n C o r r e l a t i o n : \ n " )  
p r i n t ( f o r m a t ( r o u n d ( c o r r e 1 ,  d i g i t s  = d i g i t s ) ) ,   q u o t e  = F, . . . )  

p r i n t   ( x S l o g . l i k ,   d i g i t s  = d i g i t s ,  . . . ) 
c a t   ( " \ n  Log l i k e l i h o o d :  \n" )  

c a t  ("\n") 
i n v i s i b l e  (x )  

1 
"summary. t runclm"<- 
f u n c t i o n ( o b j e c t ,   c o r r e l a t i o n  = T)  
( 
# t h i s  method i s  des igned  on the   a s sumpt ion   t ha t   t he   coe f   me thod  
# r e t u r n s   o n l y  t h e  e s t i m a t e d   c o e f f i c i e n t s .  It w i l l  ( i t 's  a s s e r t e d )  
# a l s o  work, however, w i t h  f i t t i n g  methods  that   don ' t  f o l l o w  t h i s  
# s ty l e ,  b u t   i n s t e a d   p u t  NA's i n t o  t h e   u n e s t i m a t e d   c o e f f i c i e n t s  

coef <- c o e f f i c i e n t s ( 0 b j e c t )  
1 o g . l i k  <- o b j e c t 5 l o g . l i k  
cnames <- l a b e l s   ( c o e f )  
c t o t a l  <- ob-jectScoef 
p t o t a l  <- l e n g t h ( c t o t a 1 )  
r e s i d  <- ob jec tSz  - f i t t e d ( o b j e c t )  

n <- l e n g t h ( r e s i d )  
f v  <- f i t t e d ( o b j e c t )  

p <- l e n g t h ( c t o t a 1 )  
v a r  <- ob jec tSva r i ance  
coef  <- a r r a y ( c o e f ,  c (p,  4 )  ) 
dimnames ( c o e f )  <- l ist  (cnames,  value", "Std .  Error",  " z  value? ' ,  

coef  [ ,  21 c- s q r t   ( d i a g ( v a r ) )  
" P r ( > l z l ) " ) )  

coef  [ ,  31 C- coef [ ,  l l / s q r t   ( d i a g ( v a r ) )  
c o e f [ ,  4 1  <- pnorm( - a b s ( c o e f [ ,  3 1 ) )  + 1 - pnormlabs(coef [ ,  3 1 ) )  
o b j e c t  <- o b j e c t   [ c ( " c a l l " ,  "terms") I 
O b j e c t S r e s i d u a l s  <- r e s i d  
o b j e c t S c o e f f i c i e n t s  <- coef 
ob jec tScov.unsca led  <- v a r  
ob jec tSdf  <- l e n g t h ( r e s i d 1  - l e n g t h ( c t o t a 1 )  



o b j e c t $ l o g . l i k  <- 1 o g . l i k  
c l a s s ( o b j e c t )  <- "summary.trunclm" 
o b j e c t  

1 
" I n i t  . beta"<-  
f u n c t i o n ( d a t a f r ,   r e s p o n s e . v e c ,   k l e n g t h ,   t e r m s . o b j )  

# f o r   e a c h   l e v e l   o f   r e s p o n s e  a l o g i s t i c   r e g r e s s i o n  i s  performed. 
#The i n t e r c e p t s  from t h e s e  are r e t u r n e d   a s   t h e  model c o e f f s ,   w h i l e   t h e  
# a v e r a g e   o v e r   t h e   r e g r e s s i o n s  are r e t u r n e d   f o r   t h e   e x p l a n a t o r s .  

r e s u l t  <- v e c t o r 0  
f o r ( i   i n   1 : k l e n g t h )  ( 

# p e r f o r m   g l m 0   f o r   e a c h   l e v e l   o f   r e s p o n s e .  

i ndex .vec  <- vec to r ( "numer i c" ,   l eng th  = l e n g t h ( r e s p o n s e . v e c ) )  
temp.vec <- vec to r ( "numer i c" ,   l eng th  = k l e n g t h )  
t emp .vec [ i l  <- 1 
i n d e x . v e c [ l  <- temp.vec 

temp.data <- d a t a . f r a m e ( d a t a f r ,   i t e r . r e s p o n s e )  
i t e r . r e s p o n s e  <- r e sponse .vec [as . log ica l ( index .vec ) ]  

modeli  <- g lm(pas te (" i te r . response- ' I ,  p a s t e ( a t t r ( t e m s . o b j ,  
" t e r m . l a b e l s " ) ,   c o l l a p s e  = " + ' I ) ) ,  d a t a  = temp.data,  
f ami ly  = b inomia l )  

model.coeff <- coef(mode1i)  
r e s u l t  <- r b i n d ( r e s u l t ,   m o d e l . c o e f f )  

1 

thetas  <- r e s u l t [ ,  1 1  
params <- a p p l y ( r e s u l t ,  2 ,  mean, n a . m  = T )  

params <- params -1 
params <- params [-11 # a d d e d   l i n e  

r e s u l t  <- append( the tas ,   params)  
r e s u l t  

#ext rac t  model   coef fs   and   average   over   o thers  

1 

r 



i l p ~ e f l d ~ , <  k 
# ! / b i n / c s h  -f 

make f i t t r u n c 1 m . o  
t a r  x f   t r u n c f l t . t a r  

c p   f i t t r u n c 1 m . o  $1 
r m  f i t t r u n c 1 m . o  

c p   t r u n c . f i t . d  $ l / . D a t a / . H e l p / t r u n c . f i t  
cp   t runc1m.ob jec t .d  $ l / .Data / .Help / t runc lm.objec t  
cp i n 1 t . b e t a . d  S l / . D a t a / . H e l p / i n i t . b e t a  
cp   no .g r0ups .d  $ l / . D a t a / . H e l p / n o . g r o u p s  
c p   s e t u p . p r 0 p . d  $ l / . D a t a / . H e l p / s e t u p . p r o p  

rm t r u n c . f i t . d   i n i t . b e t a . d   n o . g r 0 u p s . d   s e t u p . p r 0 p . d   t r u n c 1 m . o b j e c t . d  

r m  minv.f  matmu1t.c  matmu1t.h  matmu1t.o f i t f u n c . ~   f i t f u n c . 0   x b 1 o c k . c   x b l o c k . o  m a k e f i l e  [ri 

s e t e n v   c u r r d i r  SPWD 
cd  $1 

c d   S c u r r d i r  
S p l u s  < Scurrdir/GTLRfuncs.S 

rm GTLRfuncs.S 
u n s e t e n v   c u r r d i r  

r 



f i t t runc1m.o:   minv .0   matmu1t .o   f i t func .0   xb1ock .o  
I d  -r r d  “0 f i t t runc1m.o  minv.0 ma tmu1 t .o   f i t func .0   xb lock .0  

minv.0:  minv.f 
f77 “c minv.f 

matmu1t.o:  matmu1t.c  matmu1t.h 
cc “c matmu1t.c 

f i t f u n c . 0 :   f i t f u n c . ~  matmu1t.h 
cc “c f i t f u n c . c  

xb1ock.o:  xb1ock.c  matmu1t.h 
cc -C xb1ock.c 

r 
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