DEPARTMENT OF TRANSPORT AND COMMUNICATIONS

FEDERAL OFFICE OF ROAD SAFETY

DOCUMENT RETRIEVAL INFORMATION

Report No. Date Pages ISBN ISSN May 1989 i-xiii 0 642 51251 5 OR=0158-3077 CR82 209 CR=0810-770X ______ Title and Subtitle Rural Truck Speed Differentials The 1986/87 National Study _____ Author(s) R W Fitzgerald _____ Performing Organisation (Name and Address) R W Fitzgerald & Associates P O Box 125 QUEANBEYAN NSW 2620 Sponsor (Name and Address) Price/Availability/Format Federal Office of Road Safety G P O Box 594 CANBERRA ACT 2601 Abstract This study aimed to examine the effect of the increase in the heavy vehicle speed limit from 80 to 90 km/h on 1 January 1987. Articulated vehicle mean free speeds were found to have increased in four States; car speeds remained stable. The speed differential between cars and articulated vehicles was reduced from 10 to 8 km/h. Keywords Road safety, trucks, articulated vehicles, speed, speed differential, crashes Notes: FORS research reports are disseminated in the interests of (1)information exchange (2) The views expressed are those of the author(s) and do not necessarily represent those of the Commonwealth Government The Federal Office of Road Safety publishes two series of (3) research report reports generated as a result of research done within (a) FORS are published in the OR series reports of research conducted by other organisations (b) on behalf of FORS are published in the CR series.

RURAL TRUCK SPEED DIFFERENTIALS

....

THE 1986-87 NATIONAL STUDY

BY

R W FITZGERALD & ASSOCIATES

Po Box 125, Queanbeyan, NSW 2620 AUSTRALIA

Telephone: (062) 972 697

Electronic mail: MCI mail 3367164 Dialog Dialmail 16342 Telex 650-3367164

ABSTRACT

This study and others have shown that trucks already exceed the legal speed limits. Truck drivers are travelling at speeds they consider safe in respect of their vehicle, the traffic volume, road environment and police activity.

The principal aim of this study was to examin the effect of the increase in the heavy vehicle speed limit on rural roads from 80 to 90 km/h on 1 January 1987 in every State except Queensland, and in the ACT. Mean free speds were used to gauge whether there had been any significant effect of the speed limit increase on driver behaviour and road safety.

The sampling methods used in this study are biased towards over sampling of trucks and elevating truck mean speeds. Scant attention has been given to sample design in most of the previous studies cited.

Articulated vehicle mean free speeds have increased in four States, as has the percentage travelling faster than 90 km/h. This included Queensland, the control State for the study. Car speeds remained stable during the study period.

There has been an increase in the number of platoons led by cars over the study period. There was a decline in the number of articulated-led platoons.

Speed differentials have been reduced from 10 km/h to 8 km/h for the articulated/car vehicle mixes. Thus a successful decrease in 'speed dispersion' has been accomplished.

Analysis of crashes in Victoria and Western Australia showed no significant changes which could be attributed to the change in heavy vehicle speed limit.

EXECUTIVE SUMMARY

- A. This study and others have shown that trucks already exceed legal speed limits. Truck drivers are travelling at speeds they consider safe in respect of their vehicle, the traffic volume, road environment and police activity.
- B. Articulated vehicle mean free speeds increased in four States, as did the percentage travelling faster than 90 km/h. There has been a reduction of 2 km/h in the speed differential between cars and articulated vehicles.
- C. Car mean free speeds remained stable with some slight increases in Victoria and Western Australia.
- D. The control State Queensland which did not increase its truck speed limit also experienced an increase in articulated vehicle mean free speeds.
- E. The results obtained from an analysis of mean free speeds recorded on all-roads and two-lane roads are similar.
- F. The number of car led platoons has increased by 63% across ALL speed categories between October 1986 and October 1987. This increase straddles the speed limit change in January 1987.
- G. During the same period there was a 31% decrease in articulated led platoons across ALL speed categories.
- H. It appears that trucks have been over sampled due to the elevated number of sampling sessions during the night time hours. This could also have biassed upwards the mean truck speeds reported in this study.
- I. The results of the present study seem to be consistent with the trends in mean free speeds which have emerged from the South Australian time series. Mean free speeds of articulated vehicles have been steadily increasing since 1965 regardless of the legal speed limits.
- J. There does not seem to have been any significant changes in truck related crashes in Victoria and Western Australia (the only States examined) concident with the change in heavy vehicle speed limits.

Acknowledgements

This project required information on many aspects of vehicle behaviour from all the States and Territories. The tireless cooperation and ready assistance provided by the officers from these authorities is gratefully acknowledged. A special round of thanks goes to the field teams in each of these authorities who sat, watched and recorded vehicle speeds.

The staff of the Federal Office of Road Safety were terrific in their enthusiasm and support on this year long project. The principal project officer. the Director, Research and the Assistant Secretary, Road User Branch were always a willing foil for thrashing out problems as they arose.

A special thanks goes to our own staff involved in the project. Sue Soames provided meticulous research assistance and her efforts and cheerful comradeship were always appreciated. Leonie Gibbons did a sterling job on the crash time series. Malcolm Mearns of Datacol was responsible for a most professional job of punching the speed data.

TABLES of CONTENTS

I. INTRODUCTION	•	•	•	•	1
II. REVIEW OF THE LITERATURE	, .	•		•	2
III. Methodology					9
III.1. Data Collection procedures	•	-	Ī		9
III.1.a.1. Site descriptions - site characteristics					10
					11
III.1.a.2. Site descriptions - Traffic volumes					
III.1.b. Sampling method					11
III.1.c. Speed recording methods	•		٠	•	14
III.2. Database manipulation procedures				-	16
III.3 Weighting Functions	•	٠	•	•	17
IV. ANALYSIS and RESULTS					24
IV. 1. Hypotheses examined					24
	•••	•	•	•	
IV.1.a. Statistical assumptions					25
IV.1.b. Assumptions matrix					26
IV.2. Results: Aggregated free speeds					27
IV.2.a. Aggregated Mean Free Speed Results - All roads	3.			•	27
IV.2.b. Aggregated speeds for two-lane roads only					29
IV.2.c. All roads vs 2 lane roads conclusions					31
IV.2.d. Platooning - 2 lane roads					32
IV.2.e. Mean free speeds and Sample sizes by Time of (33
IV.2.f. Sampling Bias					34
					35
IV.2.g. Overtaking rates					
IV.3. Speed differential results - 2 lane roads					38
IV.3.a. Descriptive analysis					39
IV.3.b. Comparison to aggregated free speeds		-	•	•	41
IV.4 The results of the present study vs previous studies				•	41
IV.4.a. Other National Studies - the FORS paper					41
IV.4.b. The Eyre Highway comparisons.					42
IV.4.c. The NAASRA studies in South Australia					44
V. CRASHES					90
V.1. Crash statistics - Western Australia & Victoria					90
V.1.a. Descriptive time series analysis		•	٠	•	91
V.1.b. Western Australia	• •	-		•	91
V.1.c. Victoria	• •	•	•	•	93
VI. SUMMARY of RESULTS and DISCUSSION	, <u>.</u>		•	•	99
VII. REFERENCES					103
VIII. APPENDICES					117
IX. INDEX				٠	204

LIST of TABLES

Table 3.1: Total number of vehicle free speeds surveyed
Table 3.2: Percentage of Vehicle Free Speeds surveyed
Table 3.3: Number of active sample sessions by time of day
Table 4.1: Mean free speeds - all roads, BEFORE survey
Table 4.2: Mean free speeds - all roads, 1st AFTER survey
Table 4.3: Mean free speeds - all roads, 2nd AFTER survey
Table 4.4: 2 lane only road location site #'s
Table 4.5: Mean free speeds - 2 lane roads, BEFORE survey
Table 4.6: Mean free speeds - 2 lane roads, 1st After survey
Table 4.7: Mean free speeds - 2 lane roads, 2nd After survey
Table 4.8: Statistical assumptions matrix for Free Speeds - ALL roads . 60
Table 4.9: Statistical assumptions matrix for Free Speeds - Ann Toads . UP
Table 4.9: Statistical assumptions matrix for free speeds
2 lane roads only
Table 4.10: Statistical tests matrix for Free Speeds 62 Table 4.11: SID matrix 62
Table 4.11: CAR platoons 66
Table 4.12: ARTICULATED platoons 67
Table 4.13: CARs - mean free speeds by time of day 71
Table 4.14: ARTICULATED - mean free speeds by time of day
Table 4.16: Speed differential by State
Table 4.17: Speed differential by vehicle mix by State
Table 4.18: Speed differentials vs 'Speed dispersion' by Stage 81
Table 4.19: Cars overtaking Articulated vehicles - rates
Table 4.20: Comparison of 1978 & 1983 Free speed surveys - FORS 84
Table 4.21: Eyre highway free speed comparisons
Table 4.22: SA free speed survey comparisons 87
Table 4.23: SA - NAASRA free speed surveys 88
Table 5.1: Mean number of crashes & fatalities in WA
Table A1: Before temporal attributes
Table A2: Before site description 117 110 110
Table A3: Before site characteristics 119 121 121
Table 14: 1st after temporal attributes 121
Table A5: 1st after site description 123
Table A6: 1st after site characteristics 125
Table A7: 2nd after temporal attributes 127
Table A8: 2nd after site description 129
Table A9: 2nd after site characteristics
Table B1: TOTAL TRAFFIC VOLUMES observed at study sites by vehicle type,
STAGE 1 (Before)
Table B2: TOTAL TRAFFIC VOLUMES observed at study sites by vehicle type,
STAGE 2 (1st after)
Table B3: TOTAL TRAFFIC VOLUMES observed at study sites by vehicle type,
STAGE 3 (2nd After)
Table B4: SAMPLE TRAFFIC VOLUMES observed at study sites by vehicle type,
STAGE 1 (Before)
Table B5: SAMPLE TRAFFIC VOLUMES observed at study sites by vehicle type,
STAGE 2 (1st After)
Table B6: SAMPLE TRAFFIC VOLUMES observed at study sites by vehicle type,
STAGE 2 (2nd After)
Table B7: MEAN FREE SPEEDS based on sampled vehicles, observed at study
sites by vehicle type,
Table B8: MEAN FREE SPEEDS based on sampled vehicles, observed at study
sites by vehicle type,
STAGE 2 (1st After)
Table B9: MEAN FREE SPEEDS based on sampled vehicles, observed at study
sites by vehicle type,
STAGE 3 (2nd After)
Table B10: TOTAL TRAFFIC FLOW RATES (vehicles/ hour) observed at study

sites by vehicle type, STAGE 1 (Before)
Table B11: TOTAL TRAFFIC FLOW RATES (vehicles/ hour) observed at study
sites by vehicle type, STAGE 2 (1st After)
Table B12: TOTAL TRAFFIC FLOW RATES (vehicles/ hour) observed at study
sites by vehicle type, STAGE 3 (2nd After)
Table C1: Percentage of Heavy vehicle, Mean free speeds and Flow rates . 163
Table C2: Correlation matrix of selected mean free speeds
Table E.1: DATABASE schematics for the Truck Speed Study, Stage 1,2 & 3 172
Table E.2: Database structures/ schematics
Table G.1: Total traffic volume vs Sampled volume direction match 183
Table G.2: Total traffic volume vs Sampled volume direction match 184
Table G.3: Total traffic volume vs Sampled volume direction match 185
Table H.1: Testing of Kolmogorov-Smirnov one sample test
Table I1: Speed measurement devices and bias
Table I2: NSW Traffic Authority automatic counter data

•

.

Plot	3.1: Active sample sessions by time of day	23
		51
		51
		52
Plot		52
		63
Plot		63
		64
Plot		64
Plot	4.9: Articulated - % > 100 km/h - 2 lane roads	65
Plot	4.10: Cars - % > 100 km/h - 2 lane roads	65
Plot	4.11: Car speeds by time of day	68
		68
Plot	4.13: Platoons lead by a car - before survey	69
		69
Plot	4.15: Platoons lead by a car - 2nd after survey	70
		70
		73
Plot	4.18: Artic sample sizes by time of day	73
		74
		74
		78
		78
		79
		79
		80
		80
		81
		82
		86
		86
Plot		89
		89
		94
		94
		96
		96
	5.5: Cusum - rural crashes - WA	
	5.6: Cusum - Urban & rural fatalities - WA	
	5.7: Cusum - Melb metro & rural crashes - Vic	
	5.8: Cusum - Melb metro & rural fatalities - Vic	
	C1: Q-flow plot matrix	
	C2: Correlogram of error terms	
	Pseudo Random Normal deviates - integer values	
	Plot of residual values for Articulated vehicles in NSW 1	
	Plot of residual values for Articulated vehicles in ACT 1	

LIST of APPENDICES

APPENDIX	A	-	Site descriptions	.4
APPENDIX	В	-	Total & Sample Traffic Volumes	13
APPENDIX	C	-	Weighting procedures	8
APPENDIX	D	-	Forms used in the surveys	7
APPENDIX	Ε	-	Database schematics	1
APPENDIX	F	-	Data transfer specifications	4
APPENDIX	G	-	Free Speed data sheet problems	2
APPENDIX	Ħ	-	Statistical distribution and Assumption testing 18	;7
APPENDIX	I	-	Radar, Amphometers and Automatic counters	6

ABBREVIATIONS and DEFINITIONS

ABS Australian Bureau of Statistics.

- Accident Another term used in the literature for "Crashes". This study prefers the term crashes to accidents because it is more vehicular specific.
- ACRUPTC The Advisory Committee on Road User Performance and Traffic Codes.
- ACT Australian Capital Territory, the Australian Federal Capital Territory.
- ADR Australian Design Rule standards for vehicle design.
- Amphometer A speed measurement device used in NSW. Two rubber tubes containing air are placed across the road. Vehicles crossing the tubes create a pneumatic pulse which is used to calculate the vehicle's speed.
- ANOVA The parametric statistical testing procedure called Analysis of Variance.
- ARRB Australian Road Research Board.
- Artic Articulated vehicle or Semi-trailered vehicle.

ATAC Australian Transport Advisory Council.

Auto correlation A correlation coefficient computed between pairs of observations with lag t terms. Thus the first order auto correlation coefficient is derived by correlating all data points with their following (t=1) term.

Automatic counter

- or classifier A speed measurement device which can also classify vehicles into two different length categories or bins. The device consists of two rectangular wire loops fixed to or buried into the road surface connected to a data logger. The loops have an oscillating radio frequency signal feed to them by the data logger. A vehicle passing over the loops disturbs the static magnetic field set up by the loops and is thus counted and its speed measured.
- Bias The bias B of a point estimator t of the population parameter T is given by B = E(t) - T where E(t) is the expected value of t. t will be an unbiased estimator of T if E(t) = T.

Bus A passenger omnibus.

Car towing A Car towing a trailer, caravan or other vehicle.

Car A passenger car or car derivative such as a Station wagon.

- CB Citizens band radio used extensively by truck drivers to communicate between trucks. A typical 5 watt CB has an operational range of 5 to 8 km.
- Cusum Cusum analysis is a plot of the cumulative sum of deviations of a time series from the mean (or arbitrary reference level 'k') level of the time series.
- DOT Federal department of Transport now Transport and Communications.
- Entity set The name a database is given in the extended relational data model used by ZIM.
- FORS Federal Office of Road Safety, Commonwealth Department of Transport and Communications.
- Free speeds The speed of a vehicle in the traffic stream as measured by either a radar gun, amphometer or infra-red beam. A free speed is one where the vehicle is at least 4 seconds behind the preceding vehicle. This restriction eliminates vehicles which are platooned behind a lead vehicle and thus would have their speed restricted by the lead vehicle. Speeds are reported in kilometres per hour as integer values. See spot speeds.
- HCV Heavy commercial vehicles; referring to rigid trucks, articulated and buses generically.

Heavy vehicles See HCV

- Infra-red light beams A speed measurement device used by Western Australia. It consists of two beams of invisible infra-red light placed across the road. A vehicle passing through the beams breaks the beams. The time difference between the breaks is used to calculate the vehicle's speed.
- koh or km/h a measure of velocity in kilometres per hour.

K-S Rolmogorov-Smirnov one sample test of goodness of fit.

K-W Kruskal-Wallis oneway ANOVA. K-W is the non parametric version of one way ANOVA.

Lvan A light van i.e. Toyota Hiace.

- Motorcycle A motorised two wheeled vehicle which carries up to two people and sometimes includes a sidecar.
- mph a measure of velocity in miles per hour.
- NAASRA National Association of Australian State Road Authorities.
- NMDS National Mass Data System. A diverse collection of safety and traffic databases kept by FORS.

Normal & Gamma

.

distributions Statistical probability distributions which have known

mathematical attributes which are useful in traffic research.

- NRFII National Road Freight Industry Inquiry.
- NSW New South Wales, the Australian State.
- ORS Office of Road Safety former name of FORS.
- Pethv Percentage of heavy vehicles. The percentage of the total traffic volume made up of heavy vehicles.
- Platoon A platoon of vehicles is a small queue of vehicles immediately following a lead vehicle which is acting as a block in the traffic stream. The definition of free speeds precludes measuring the speeds of platoon members because they are within 4 seconds of another vehicle.
- O flow weights Weights for stage 2 (1st after) which are computed by dividing the total traffic flow rate (in vehicles per hour) for stage 2 by the corresponding flow rates at the same site in stage 1 (Before stage). Thus these weights take into account not only the total volume of traffic, but the length of the recording session which varied between study stages.
- Q-flow rate Flow rate of vehicles in a traffic stream expressed as vehicles per hour passing a survey site. Also referred to as flow rates.
- QLD Queensland, the Australian State.
- Radar Sometimes called a "Radar Speedgun"; a speed measurement device used extensively by Australian Police forces for a radar speed enforcement. The speedoun directs frequency beam toward a vehicle (oncoming or receding) and uses the doppler shift to calculate the vehicle's speed. There are a number of frequency bands used by these speedguns - X and K band. Many vehicle drivers have radar detectors mounted in their vehicles and can detect a radar beam some kilometre or more ahead. Slant radar which places a very narrow radar beam at an acute "slant" across the road reduces the utility of these radar detectors considerably.
- Raw weights Within each stage, the total traffic volume divided by the sample traffic volume.
- ROSTA Road Safety and Traffic Authority of Victoria. ROSTA was the predecessor of RTA.
- RTA Victorian Road Traffic Authority.
- SA South Australia. the Australian State.
- SAA Standards Association of Australia.
- Sample traffic volume Of the total traffic volume at a site only a certain fraction is sampled. These vehicles become the sample

traffic volume.

- SAS Statistical Analysis System. The other statistics package used for data analysis.
- Space speeds Speeds of vehicles observed on a long homogeneous stretch of road at one brief time. As an example, if the speeds of all vehicles contained on eight kilometres of the Hume Highway were measured during a brief snapshot, these speeds would be space speeds.
- Speed window The speed window is the degree of overlap between the minimum and maximum speeds for cars and articulated vehicles.
- Speed dispersion Originally, this term referred to the speed difference between trucks and cars. I prefer to rename this term "Speed Differential" so as not to confuse it with the statistical term "speed dispersion" referring to the variance of speed measurements.
- differential The individual speed difference between serial sequential pairs of vehicles travelling in a single lane of traffic. For the purposes of this report, I have restricted the discussion of speed differentials to 2 lane roads (single carriageways) only.
- Spot speeds Speeds of vehicles measured at one location or spot over long periods typically with a radar gun. All free speeds in this report are spot speeds.
- SPSS Statistical Package for the Social Sciences the computer program used in the analysis of the data.
- Study stage Stage 1 the before survey. October-December 1986. Stage 2 - the 1st after survey. March-April 1987. Stage 3 - the 2nd after survey in September-October 1987.
- TA or TARU Traffic Authority or Traffic Accident Research Unit of New South Wales.

TAS Tasmania.

Speed

Total traffic volume The total volume of traffic which passed a recording site in a specified stream direction.

Truck A Rigid truck as distinct from an Articulated vehicle.

Un-weighted results The statistical analysis has been performed on the raw data without any weighting applied.

VHSOSS Victorian Heavy Speed and Operational Safety Study.

VIC Victoria, the Australian State.

WA Western Australia, the Australian State.

Weighted results The statistical analysis has been carried out with

ZIM The database package used for the study.

This study began at the June 1986 meeting of the Australian Transport Advisory Council (ATAC). At that meeting it was resolved to increase truck speed limits from 80 km/h to 90 km/h on 1 January 1987. This would occur in all States and Territories except for the Northern Territory (no speed limit), Queensland which already had a speed limit of 90 km/h and Western Australia which increased its limit from 90 to 100 km/h on the Eyre highway. The decision was an interim measure for a trial period to determine whether any negative road safety results would occur.

By September the Federal Office of Road Safety (FORS) 'Safety Aspects of Increased Truck Speed Limits' project had been started and the first surveys took place in October 1986. The contract for the collation and analysis of the speed survey data was put to tender in early December 1986 and the successful tender chosen and commissioned on 16 January 1987.

The principal aim of the project was to monitor the safety aspects of the increase in truck speed limits on rural roads from 80 km/h to 90 km/h which occurred on 1 January 1987. These aspects included truck speeds, platooning and crashes involving trucks.

The study had three survey periods: A 'before' survey in October-December 1986. a 'first after' legislative change survey in March-April 1987 and a final 'second after' followup in September-October 1987.

Depending on the outcome of the three stage study, a recommendation would go to ATAC to increase truck speeds further from 90 to 100 km/h in July 1988.

Each State would use its own existing field teams and survey sites with forms designed by FORS. FORS were to coordinate the data collection with each of the participating States and pass the data onto the consultant.

The States would also be asked to provide a dump of their crash statistics databases for all crashes involving trucks. This crash data would be used to assess any crash and fatality outcomes of the legislative change.

The consultant was required by the brief to present a seminar on the first study stage results. The seminar was presented at FORS Canberra on 5 March 1987. The final report was required by mid November for inclusion into the ATAC briefing in December 1987.

This report has become a sizable and significant document on the subject of truck free speeds. It has been designed to be a reference document which would allow future researchers to directly continue many of the threads left by such a large project.

The database from this project is in the custody of FORS as part of the National Mass Data System (NMDS) and full documentation for its use is included in this report.

"Truck and bus speed limits on rural roads". Loong, Budd & Quayle (June 1985) for FORS (Working Document WD83) has certainly shaped the current study. This particular paper is based on a number of previous works. These were:

- * the 1978 Victorian Heavy Speed and Operational Safety Study (VHSOSS).
- the 1984 National Road Freight Industry Inquiry (NRFII).
- * the Introduction of Australian Design Rules (i.e. ADR's) 35 and 38.

* the 1983 Rural Speed Survey conducted for the Advisory Committee on Road User Performance and Traffic Codes (ACRUPTC).

In this paper, Loong et al. discussed truck and speed limit compliance:

- 1. Loong et al. noted. based on the 1983 free speed survey, that the speed limit compliance was very low for trucks and buses on all types of rural roads throughout Australia.
- Taking all types of roads together the 85th percentile for truck and bus speeds varied from 86 km/h to 99 km/h. Only two out of the 15 sets of results showed figures below the 90 km/h speed limit at the time.
- 3. Speed limits appear to have little effect on the operating speeds of trucks and buses on rural roads.

In relation to crash rates, the conclusions drawn from the National Road Freight Industry Inquiry (NFRII) based on the 1981 Fatal Accident File available from FORS suggested the following:

- 1. There are considerably higher fatal crash rates for trucks in rural areas.
- 2. That articulated trucks have far higher crash rates than rigid trucks. These crash rates are lower than those for cars and station wagons.
- 3. In multi-vehicle crashes involving a truck, ten per cent of those killed were the occupants of the trucks and 90 per cent were the occupants of other vehicles.
- 4. Lastly, for all crashes, the crash rate for articulated trucks is a little under half of that for cars and station wagons. Undoubtedly higher speed will increase crash severity but work done by the Traffic Accident Research Unit of New South Wales (TARU) indicates that there may be a threshold speed level beyond which survivability is not affected.

The work of Solomon (1964) and the ROSTA (1978) study indicates that on primary rural roads crash occurrence potential can be reduced if truck and car speeds are brought closer together.

This leads to the concept of speed dispersion, which I have termed speed differential. The FORS submission to the National Road Freight Inquiry (NRFII) recommended the abolition of differential speed limits and the implementation of 100 km/h speed limits for trucks.

The major conclusion which the Loong et al. study came to was that taking all the factors into consideration.

"It is concluded that differential speed limits for trucks and buses operating on rural roads should be eliminated. On the basis of observed speeds and industry opinion a speed limit of 100 km/h for trucks and buses on rural roads is indicated."

Some of the factors which Loong et al. considered in relationship to speed differentials were:

- 1. Reducing speed differentials to minimise overtaking.
- 2. The possibility of crash occurrence.
- 3. Crash severity.
- 4. Speed limit compliance and enforcement.
- 5. The braking standard for truck and trailer as compared to the new ADRs.
- 6. Industry opinion.
- 7. The road environment.
- 8. Cost benefit evaluation.

One point that they did note was that:

"It appears that the benefits of an overall reduction of speed dispersion may be offset by the disbenefits caused by these additional overtaking manoeuvres."

Thus the thrust of the Loong et al. study is that reducing speed differentials will increase rural road safety in relationship to trucks.

The paper entitled "Heavy Vehicle Speed Limits" (1985) by the Federal Office of Road Safety concerns the case for removing speed limit differentials.

On page 26. Appendix 3 of this paper the authors compare and contrast the 1978 Callaghan study of free speeds and the 1983 survey of free speeds. Both studies were coordinated by FORS on behalf of ATAC.

The first point made about mean speeds and speed dispersions is that the 1978 study (Callaghan, 1978) indicated that the difference in statewide mean speeds of cars and trucks was between 11.6 and 19.5 km/h. By contrast this differential had reduced to between 9 and 18 km/h in the 1983 study. The authors put this down to generally higher truck speeds in 1983.

A point that needs to be made here is that the definition of the speed differential as "speed dispersion" is the difference between the mean speeds of cars and trucks in contrast to the concept that I will be using in this paper. Speed differentials are the individual speed differences between serial seguential pairs of vehicles.

The other important point that is made here is the question of compliance. As Callaghan pointed out in 1978, over 50 per cent of the heavy vehicles exceeded 80 km/h and almost 50 per cent of cars exceeded 100 km/h (the

to the manual state of the state of the state state

¹ Refers to the NFRII recommendation that only trucks conforming to the new braking ADRs be allowed to travel at faster speeds. speed limits at the time). By contrast, in 1983 there is an indication of a higher degree of compliance by car drivers with more than 40 per cent of cars exceeding the speed limit (divided highways in NSW & QLD). There was a reasonable level of compliance to truck speed limits in Queensland with only 20 per cent exceeding 90 km/h on undivided highways and 37 per cent on divided highways. For other States however the proportion of trucks exceeding 80 km/h ranged from 53 to 85 per cent.

Thus the conclusion that the authors came to is that speed limits do not influence free speed significantly, particularly speed limits which are regarded as unreasonable by the truck operators themselves. To quote:

"The 1983 speed survey clearly indicates that truck drivers by their massive non-compliance regard 80 km/h to be an unreasonably low limit. If the truck speed limit was increased to the general speed limit, which is in excess of 95 km/h. and this was accompanied by a public information campaign about speed dispersion there is good reason to expect that the new limit would be much better complied with, that the high limit would be more effectively enforced and that very high truck speeds would be reduced and that overall speed dispersion would be reduced as well."

A problem with both the Callaghan paper of 1978 and also this review paper from FORS is that no sample sizes are quoted.²

The conclusions of this paper (Callaghan. 1978) were that there was a relative lack of compliance with speed limits in most States. Drivers select the speeds they consider most appropriate to the prevailing conditions. Also the free speed distributions for cars and their drivers

 2 For the Callachan study (1978), appendix B1 on page 30 in New South Wales 16 sites were observed and the sample sizes range from as small as about 51 through to a maximum of 496. It appears that the sample sizes were about 3,500 to 4,000 vehicles per State. The states sampled were NSW. VIC, QLD and SA.

In the Loong & Budd study and also the HCV surveys in 1983 (ROSTA, 1983) there is no indication in either paper of the sizes of the vehicle samples taken. There is an indication in the Loong & Budd paper about the number of sites surveyed - that is to be found in Appendix A page 12. This lack of published sample sizes I consider to be a serious problem. The comparability of the studies is a function of the sample sizes.

In this respect the only study with which I can very carefully compare the present study is the 1978 Callaghan study which quotes sample sizes. These sample sizes were:

New South Wales	5,516
Victoria	unknown
Queensland	9,086
South Australia	6,884
Western Australia	2,000
A.C.T.	1,104

The grand total is approximately 29,590 vehicles. So the Callaghan study of 1978 is quite definitely comparable to the present study (see table 1.1). In fact the collection forms and procedures seem to have set the ground rules for all subsequent surveys. have higher standard deviations than those for HCVs. Callaghan noted that the free speed distributions tended to be normal.

Callaghan findings included:

1. that 50 per cent of heavy commercial vehicles exceed the 80 km/h speed limit and almost 50 per cent of cars exceed the 100 km/h limit in most States.

2. that the speed differentials between cars and their derivatives and heavy commercial vehicles is generally between 12 and 23 km/h. This is based on the subtraction of the free speed means.

The paper by J.E.Cowley titled "The 1979/80 ACRUPTC Survey of Vehicle Free Speeds in Capital Cities of Australia" published in September 1980 is another landmark study of HCV speeds.

This survey measured free speeds of cars and derivatives, trucks and other vehicles on a wide spectrum of urban roads in capital citics of the six States of Australia and the Australian Capital Territory. The survey was carried out between November 1979 and July 1980 and consisted of 145 sites covering a total sample of 4,268 vehicles.

The cities covered were Sydney, Melbourne, Brisbane, Adelaide, Perth and Hobart and the Australian Capital Territory. The guidelines for the survey called for free speeds to be measured on level straight roads (dry pavements) on weekdays between 0800 hrs and 1700 hrs during non-holiday periods.

A wide variety of road classes including freeways, arterial, nonarterial, divided and un-divided roads with a variety of posted speed limits were included in the sample.

One interesting conclusion that Cowley reached regarding the use of averages weighted by vehicle sample sizes as a method of reporting results was:

"It is unlikely that simple and weighted averages would differ markedly for cars because the sample sizes are large and generally consistent".³

One of the main conclusions Cowley reached, highlighted in Table 4 (Cowley, 1980) was that the 85th percentile speeds range from 67 to 74 km/h and that 55 per cent of cars in Australian capital cities exceeded the posted urban speed limits. Also the speed means ranged from 60 to 80 km/h and the 85th percentile ranged from 70 to 90 km/h depending on the particular road type. The proportion of vehicles exceeding the speed limit ranged from 30 to 40 per cent for freeways and speed zoned arterials and up to 55 to 65 per cent for roads operating under the 60 km/h general limit. Thus the speeds of cars in Australian capital cities were very high in comparison with existing speed limits.

Moving on to trucks Cowley noted that 37 per cent of rigid trucks exceeded the speed limit. Truck speed compliance across Australia was more consistent than for cars.

Once more the conclusion he reached was that the free speed of rigid

³ Thus like Callaghan in 1978, Cowley reported unweighted simple averages.

trucks in Australian cities;

"tend to be high in comparison with the posted speed limits on arterial and non-arterial roads subject to general 60 km/h speed limits".

The free speed characteristics of rigid and articulated trucks was similar and ranged within plus or minus 5 km/h depending on the State. Apparently Thompson (1978) noted the same feature.

As far as speed differentials are concerned, Cowley noted in Table 4 that rigid trucks were in general somewhere between \emptyset and 15 km/h slower than cars.

J.E.Cowley was responsible for another paper titled "A Review of Rural Speed Limits in Australia" published in January 1980.

Cowley's major conclusion (1980,68) was that there appears to be no meaningful relationship between the free speed parameters and the speed limit values. If anything the correlations are negative. He also recommended that the absolute speed limits for Australia should be somewhere in the vicinity of 100 to 110 km/h and that there appears to be no clear advantage for either level for daytime operation.

As for speed differential limits for the four vehicle classes, heavy trucks, omnibuses, vehicles towing and motorcycles with passengers, he recommends a 90 km/h limit for the first three i.e. heavy trucks, omnibuses and vehicles towing, and no differential limit for motorcycles with passengers. The 90 km/h differential limit is conditional upon the 110 km/h speed limit for general traffic being implemented. He also concludes that there is substantial evidence supporting the differential 90 km/h limit for heavy vehicles even when there is 100 to 110 km/h general speed limit in place.

The main thrust of Cowley's report was to examine past and present rural speed limit provisions in relationship to the different speed limits enforced on Australian rural roads and to relate this to the findings from local and overseas studies of the safety benefits of rural speed limits.

Cowley raises the question of the comparison between crashes and casualty rates and speed limits. This harks back to the Solomon study (1964) which showed that as speed limits rose then the fatality rates rose dramatically as well. The problem that Cowley highlights is that it is very difficult to do these comparisons because of the different reporting criteria used especially with casualty information. Thus the only practical method is to compare fatality rates.

Cowley also notes that there is very little support for differential speed limits for night time driving. Cowley suggests that one of the main objectives of speed limits is to reduce the variance of speeds within the traffic stream. This has the effect of primary safety as the risk of crash involvement increases as speeds above the mean traffic speed increase. A secondary safety effect is that severity of crashes increases steadily with speed, as shown by Solomon in 1964.

In conflict with the above objectives is that by reducing traffic speeds an increase in journey time, trip cost and energy consumption is produced. More importantly, compliance with the speed limits drops as motorists tend to go faster than the speed limit.

Gavin Maisey's paper "The Effect of Increasing the Speed Limit and

Associated Penalties for Heavy Vehicles on the Eyre Highway" (Maisey, 1983) has substantially influenced the present study. It has also provided valuable longitudinal data for calibrating this present study.

Maisey's study is one of the best studies of trucks in the literature to date. It consisted of a 24 hour unobtrusive observation of traffic speeds on the Eyre Highway, recorded over three survey periods. The first period was nine months prior to a change in the legislation and then six months and eight months after the change.

The legislative change increased the speed limit for heavy vehicles travelling along the Eyre Highway in Western Australia from 80 km/h to 90 km/h on 1 February 1983.

The major finding of this study was that the proportion of heavy vehicles exceeding 90 km/h decreased from 80 per cent in the before study to 73 per cent in the first after dropping to the final 67 per cent in the second after study. Also the percentage of articulated vehicles travelling faster than 110 km/h fell from 21 per cent to 7 per cent and then returned to 13 per cent (see plot 5.2).

An interesting point made by Maisey is that the free speeds of cars should be used as a control to calibrate the changes in truck speeds. Thus the open speed limit of 110 km/h for cars and motorcycles remain unchanged across the study period. Maisey observed very little change in the car speeds between the before and the two after periods. An important definition which Maisey adopted was that semi-trailers (articulated vehicles) were used as an indicator of heavy vehicle speeds in general. Very few rigid trucks were observed in his Study.

Maisey maintains that there were no long term trends, either increasing or decreasing, leading up to the change in legislation which would have affected the results.

The unobtrusive method that Maisey used to measure free speeds consisted of infra-red light beams with the detectors some 3 to 4 metres from the road and field officers some 100m from the road. Maisey maintained that monitoring of CB communications suggested that very few drivers at all were aware that the speed surveys were being conducted. Maisey cites a paper by Johnston & Fraser, 1983, which found that visible digital detectors did not influence driver speed behaviour.

The results of the Maisey study were:

1. The proportion of vehicles exceeding 90 km/h decreased following the change in legislation. This decrease went from 80 per cent of vehicles travelling faster than 90 km/h to 73 per cent on the first after to 67 per cent on the second after.

2. The mean speeds fell approximately 2 km/h and 4 km/h from 100 km/h recorded in the before study.

3. The reduction in high speeds of the semi-trailers in the first after period was statistically significant (using the log odds ratio test) but the change in the second period was not significant.

4. Day/night effects: Maisey found that the speeds of semi-trailers were much higher at night than during the day-time. Most of the decrease in semi-trailer speeds in the two after periods was observed during the night-time hours. In the before period, 39 per cent of semi-trailers at night were observed at speeds exceeding 110 km/h and this dropped to 11 per cent and 14 per cent respectively in two after studies. He found that this reduction in high night-time speeds of semi-trailers exceeding 110 km/h in the first after period was statistically significant when compared with cars and motorcycles.

5. Vehicle direction effects: Maisey found that the westward bound semi-trailers recorded speeds consistently higher than most eastward bound. The 85th percentile speed for the before study for westward bound semi-trailers was 120 km/h and 106 km/h for eastward bound vehicles.

Most of the reduction in semi-trailer speeds in the after studies was in the westward direction.

Maisey concluded that there was no substantial increase in the number of semi-trailers or other motor vehicles involved in reported crashes in 1983 compared with previous years. Thus, there did not seem to be any negative safety aspects to the speed limit increase, and he concluded that:

"the current speed limit for heavy vehicles on the Eyre Highway remain at 90 km/h provided that the increase penalties remain for the violations of the limit."

The study's methodology was a "before and after" design with matching on study sites. The legislative change occurred on 1 January 1987 and the three surveys were designed to straddle the legislative change.

The legislation increased the speed limit for all HCV from 80 km/h to 90 km/h on rural roads. This occurred in each of the seven States in the study (see Table 3.1) with the exception of QLD and WA. QLD had no speed limit change and the speed limit remained at 90 km/h for the duration of the study. Thus QLD acted as a control for all other States. WA's speed limit rose from 90 km/h to 100 km/h only on the Eyre highway from 1 January 1987 for articulated vehicles only.

The before study occurred during October-December, 1986. Tables A1 - A3 (Appendix A) describe the sites in detail.

The first after survey occurred in March-April 1987 (see Tables A4 - A6, App. A) and the second after survey took place in September-October 1987 (see Tables A7 - A9, App. A), a year after the first survey.

The same study sites were used in each of the three surveys.

The measurement instruments used to record vehicle free speeds include radar speedguns (all States except NSW & WA). amphometers (NSW) and infrared light beams (WA). The question of recording bias induced by the use of these instruments is discussed in Appendix I.

Site selection was determined in consultation with each State. Only rural roads were selected and as all States had existing speed monitoring sites on these roads. a selection of these was used in the study. The sites chosen were straight level stretches of rural main roads or freeways.

III.1. Data Collection procedures

The data collection was carried out by each State's existing field teams using a form devised by FORS (see Appendix D). This form was a copy of the NSW form.

The data collected was of two types. Firstly, a header sheet was completed for each recording session and described the site, its location, time and date of the session, site characteristics (road type, surface etc) and weather conditions. A separate tally sheet was kept for each session and tallied the total number of vehicles passing that site by vehicle type.

The second set of data collected consisted of the free speeds for a sample of the total traffic volume. Thus the vehicle type, its free speed, the time of recording, direction of travel and platoon lengt' behind it, if any, were recorded for each vehicle sampled.

Survey sessions consisted of a minimum of 4 hours in duration at times selected by the States. A rigorous time sampling strategy was not used to address the issue of time of recording bias. FORS had specified the three time periods (6am - 6pm, 6pm - 12pm, 12am - 6am) and the days Saturday.

Tuesday and one other day.

Traffic streams were generally sampled in one direction only. Appendix C outlines some of the problems encountered with sample direction.

The methodological issue of inter-experimenter variability could not be addressed by the study design. The authors were able to attend a limited number of field team recording sessions in NSW and the ACT. These suggested that more work needs to be done to reduce the recording noise entering the data at this stage. Overall, the field teams were experienced teams used by each State on a regular basis.

The total traffic volumes were collected to allow post sample weighting to adjust for flow rate differences between the three phases of the study. Section TII.3. addresses this issue.

There is debate over the question of conspicuity of speed measurement and its consequent effect on driver behaviour. There are two related issues in this debate: one is the effect of the speed measurement device on driver behaviour and the other is the presence of the field team, its conspicuity and the effect on driver behaviour.

Victorian officials went to some lengths to demonstrate the experimenter bias induced due to the presence of field teams by the roadside. However, it would seem that any vehicle parked on the roadside may affect driver behaviour. The effects were equivocal.

Gavin Maisey's team in WA were situated 100m from the roadside and were considered invisible to the drivers. CB evidence reinforces this belief.

The issue of bias induced by the presence or absence of radar is discussed in detail in Appendix I. The evidence suggests that the use of a speed recording device which is also a police speed detection device does significantly frect driver behaviour.

A related issue is whether automatic counter data is a valid and reliable method for collection of free speed data. Appendix I examines this issue and finds these devices wanting.

TII.1.a.1. Site descriptions - site characteristics

The site description documentation is contained in Tables A1 through A9 in Appendix A.

Tables A1. A4 and A7 contain the temporal attributes of the sites that were used to record free speeds for each study stage.

Part of the reason for including these Tables is to illustrate the variety from State to State of times in which the free speeds were recorded. Probably the most consistent set was in Western Australia where all the sites were under 24 hour surveillance.

⁴ This lack of rigour became apparent when the sample fractions by State and vehicle type are examined (table 1.1). If the sampling regime was at all systematic then the sample fractions by vehicle type should be equal.

Tables A2, A5, A8 contain information describing the road characteristics of each site. Tables A3, A6, A9 contain more details concerning the environmental aspects of each site.

III.1.a.2. Site descriptions - Traffic volumes

Tables B1 through B3 (Appendix B) contain a complete list of the total traffic volumes observed at all the study sites broken down by vehicle type for each of the stages. Thus looking at Table B1 for the first location (site 1001, New South Wales site number 1) we see that the speed recordings were carried out on 21.10.1986. The recording session started at 0200 hours and was completed at 0600 hours.

During that period of time the total volume of traffic that passed that recording site was 130 vehicles as indicated by the far right hand column. Those 130 vehicles were broken down into (reading from left to right) 81 cars, 36 articulated vehicles, 9 rigid trucks, 3 buses, no cars towing, 1 motorcycle and no light vans.

Tables B4 through B6 contain a complete list of the sample traffic volumes observed at all the study sites broken down by vehicle type and stage of the study. Thus comparing location No. 1001 once more with the its sample volumes (Table B4) we see that from the total traffic volume of 130 vehicles which passed this site between 0200 and 0600 on the 25.10.1986, 81 were sampled.

Of those 81 vehicles sampled there were (Table B4): 42 cars, 23 articulated, 7 trucks, 1 bus, 2 cars towing, no motorcycles and 6 light vans.

Interestingly enough this particular site illustrates some of the anomalies that were discovered in the site data from a number of the States. For instance, the total traffic volume reported no cars towing (Table B1) yet two vehicles were sampled (Table B4). Similarly, the total traffic volume for light vans was none, yet there were 6 light vans sampled.⁵ The quality of the total traffic volume information reported on the header sheets is questionable. This is an unfortunate consequence of the lack of tight and consistent survey control.

III.1.b. Sampling method

Table 3.1 summarises the sampling frame for this study. The sampling methodology consisted of a mixture of systematic sampling and 24 hour surveillance of the traffic streams. Western Australia and Tasmania carried out the 24 hour surveillance due to low traffic volumes.

The sampling was to have occurred at three levels - date of each study stage, sites selected and traffic flow sampling by time of day and week.

1. The date of each study stage was dictated by the political agenda. The before stage (October 1986) was followed one year latter by Stage 3 (October 1987). The first after study (stage 2)

⁵ The Tally sheets included with the header sheets were checked carefully against the totals reported on the Header sheet. The Sample volumes reported on the Header sheet were ignored and replaced by the number of records found from the free speed sheets.

occurred in March/May 1987, four (4) months after the legislative change on January 1, 1987.

2. Site selection was dictated by the States' existing traffic surveys. They selected from their site suites a group of rural sites with potentially high volumes of trucks.

3. Within a site, systematic sampling was anticipated, usually every fifteen minutes, with five minute recording blocks. The site sampling was far from ideal.

From the statistical standpoint the sampling methodology for this study was not rigorous and is probably biased towards over sampling of trucks. The sampling methods outlined in the study brief could not be enforced by FORS.

Referring to Table 3.1 which outlines the total number of vehicles surveyed by State, study stage and vehicle type a number of pertinent points emerge.

1. The sample volumes were 27,199 in the before survey dropping to 24,451 in the first after survey and rising back to 25,853 in the second after survey. These numbers constitute the number of vehicle free speeds which were measured by the respective field staffs in all the States combined.

2. The total traffic volumes which passed the field staffs while they were sampling, thus forming the universe of vehicles which could be sampled was 58,081 in the before survey, 53,332 in the first after and 52,986 in the second after survey. Thus the sample fractions were quite healthy, ranging from 46 per cent in the before survey to 45 per cent in the first after through to 48 per cent in the second after survey.

3. The consistency of the sampling fractions across the study stages in aggregate is reassuring.

It should be noted that each State used its own field staff and its own established sampling procedures to measure all of these free speeds, quite independent of each other and FORS. If anything the consistency which has emerged is a reflection of the well established field work and field procedures which the States have been using for a number of years to measure free speeds. Thus FORS was quite fortunate in being able to tap into this well established system.

4. For articulated vehicles the sampling fraction fluctuated from 80 per cent down to 73 per cent and then up to 79 per cent across the three study stages - a range of 7 per cent. Rigid trucks fluctuated from 81 per cent through to 72 per cent then back to 72 per cent - a range of 9 per cent. Cars fluctuated from 37 per cent to 39 per cent to 42 per cent across the three stages - a range of 5 per cent.

5. HCV have been over sampled compared to cars. The sampling instructions emphasised articulated vehicles. Given that over sampling did occur then a process of post sample weighting was called for (see section III.3.). Sections IV.2.e and IV.2.f. examine some of the possible causes of this sample bias.

6. The 100 per cent sampling fractions for WA and Tasmania are a reflection of the small traffic volumes in those States. No explanation

for the variation in the sampling fractions for the other States is available. New South Wales, Victoria and Queensland for the first after and the second after surveys had approximately the same total traffic volumes but their sampling fractions were radically different (Table 3.1).

Point five above leads to the question of how were the individual vehicle types sampled compared to each of the other States. Table 3.2 lists the sampling percentages of each vehicle type within each State for each Study Stage.

Western Australia and Tasmania were the only two States which implemented 24 hour surveillance and thus removed any sampling effects due to Time of Day. Articulated vehicles consistently accounted for 20% of the vehicles sampled in WA for each of the study stages. The percentage of articulated vehicles ranged from a low of 4% in the ACT to a high of 45% in VIC. The percentage of cars fluctuated across States from 30% in VIC to 79% in TAS.

This examination of the sampling percentages by vehicle type strongly suggests that either the actual distributions of vehicle types in the States are radically different or that the samples in each State are biased towards different vehicle types. None of the State distributions resemble the overall Australian distribution of "Registered motor vehicles" published by the ABS (see Table 3.2). But the proportions of vehicle types on register are not the same as the proportions of vehicles likely to be observed on the road.

The observed bias in vehicle distributions then leads to an examination of the Time of Day effects. In an ideal study, each State would have used 24 hour surveillance (thus controlling time of day as a sample factor) and all sampled on the same days (thus controlling for day of week and time of year). In practice the States sampled in blocks of four hours spread unevenly across the day all on different days spread over a month.

Examining Time of Day alone. Table 3.3 and plot 3.1 illustrate the number of active sample sessions aggregated across all States and all sampling days for each of the study stages.⁶

There seems to have been a heavy emphasis on sampling between 1700 hrs and 2200 hrs. The number of sampling sessions varies widely over the 24 hour period. In an ideal study, this frequency distribution would be close to a straight horizontal line.

If a particular vehicle type, such as a truck was more likely to be on the road at a particular time of day (such as between 1700 and 2200 hrs), then that vehicle type would have been over sampled as a function of the number of active sampling sessions. The distribution of plot 3.1 is quite similiar to the sampling distribution of articulated vehicles in plot 4.18.

⁶ A three dimensional plot of the sampling session frequencies was drawn for each State. Thus the X axis contained the Time of Day of the sampling session, the Y axis the date on which the sample took place and the Z axis was the number of sessions.

Thus plot 1.0 is a side on view of the Z and X axis with the Y axis collapsed.

Conclusions

- a. The total sampling fractions for each stage as noted in Table 3.1 were consistently above 45 per cent of the total observed traffic streams in each study stage.
- b. The sample traffic volumes were equal to the larger studies done elsewhere in Australia - Cowley 1980 and Callaghan 1978.
- c. The sampling fractions for articulated vehicles for each stage were consistently greater than 73 per cent.
- d. The sampling fractions for cars for each stage were consistently greater than 40 per cent.
- e. The survey design is such that statistically we cannot say with any confidence that the sample is representative of the Australian vehicle population. Clearly, trucks have been over sampled, but to what extent is unknown. The effects of time of day and the number of active sampling sessions have contributed substantially to this bias.

III.1.c. Speed recording methods

The following section outlines the methods that each State used to record free speeds. Some States did not provide this detailed information.

A. Western Australia

Measuring device:

Two infra-red light beams were used to detect vehicle speeds, they were linked to a Digitector speed recording instrument.

Two devices with infra-red light beams 25 metres apart were set back three to four metres from the roadway. These two infra-red light beams were linked to the digitector with 100 metres of cable so that the observers were well obscured by surrounding vegetation.

Visibility of surveys:

The visibility of the field team was further minimised by situating the observers and vehicles well back off the roadway.

Monitoring of CB radios indicated that vehicles using the road were not aware of the speed recording operation. Two police officers were used to complete the surveys and unmarked police vehicles were used for transport to and from the survey sites.

Site selection:

The sites selected were flat straight open road, 110 km/h maximum speed limit with surrounding vegetation and not in close proximity to urban centres. The road type was two-lane undivided highway.

B. New South Wales.

Measuring Device:

An amphometer which consisted of two air tubes connected to KR11 transducer counting unit. The spacing between the tubes was 15 metres. Some sites used different equipment with tube spacings of 5 metres. Two people were used to record information: One recorded the speeds and the other counted the volumes. The type of vehicle used to transport the field officers was a Falcon wagon and was a hire car with Queensland plates.

Visibility of the surveys:

The field team parked well back from the road so that it was not readily obvious what the car was doing. CB radio was used to monitor whether the car was inconspicuous or not and there seemed to be no problems with conspicuity.

Site selection: As specified by FORS letter 19.9.86 but with consideration given to the practical problems of travel to and from the locations.

Straight level sections and the ability to get the field team vehicle off the road was one of the major criteria.

C. Australian Capital Territory

Speed Measuring Device:

A radar speed gun with the brand name "Speedgun" manufactured by CMI Incorporated USA.

Number of Persons Involved:

Two people were involved in each survey period: one person for traffic unit classification, one person to record the speed measurements.

Visibility of surveys:

The type of vehicle used to undertake the survey was a Commonwealth registered Ford station wagon with a flashing light attached on its roof (which was turned off). The vehicle had à CB radio transceiver which enabled field staff to monitor truck drivers' conversations. No attempts were made to camouflage the, vehicle.

Site Selection:

The sites were selected to meet the specifications supplied where possible. Two sites were selected after discussion with FORS. Majura Road (a two-lane undivided road) and the Barton Highway (four-lane divided road) were chosen.

D. Victoria.

Speed Measurement Device:

A radar gun through the back window of the vehicle. Vehicle speeds were measured from a distance of about 500 metres with speeds not being recorded any closer than 200 metres. They used the K-Band radar which is not the radar used for enforcement in Victoria.

Visibility of surveys:

The type of vehicle used to undertake the survey was a nonstandard car (not an official car) e.g. Mitsubishi Colt or a Toyota Corona. The vehicles were parked in the same direction as the traffic flow with the bonnet up and if it was not raining, a spare type or director's chair obscuring the back number plate.

The vehicle was to be parked as far off the road as possible. CB radios were used to monitor truck drivers' comments but the staff were instructed not to make transmissions. CB radio transmissions indicted that drivers were aware of the survey vehicle.

Site Selection:

Nine rural sites were selected; either four-lane divided freeways or four-lane divided highways and two-lane highways. Other than that there are no other details on site selection.

III.2. Database manipulation procedures

Appendix E, Tables E.1 and E.2 contains the schematics of the database structures used to manipulate the header sheets in relation to the free speed data for all stages of the truck speed study.

The database model used to manipulate the truck speed data was the extended relational model, sometimes called the entity relational model, which is used by the database package ZIM.

Each stage of the study had three databases (entity sets). Using Stage One as an example, the first entity set is part 1 of the header sheet information called TRKIA. This database contains all the site descriptions - road type, road name etc..

The second part of the header sheet is contained in the entity set called TRK1B which contains all the total traffic volumes for all the corresponding sites in the database TRK1A. This database also contains all the computed means, all the computed traffic flows and all the computed sample volumes.

The main free speed entity set is called BFSP and contains the information coded for every vehicle sampled. This includes location, the date, the time the vehicle was recorded, its free speed, the vehicle type, the direction it was travelling in and also what sort of platooning occurred behind it.

A link function LINK1B and LINK1A were used to join the entity sets TRK1B to BFSP and TRK1A to BFSP. See Tables E.1 and E.2 for details.

The stages which were required to verify and link this set of three databases together for each of the stages are outlined in the schematic Table E.2 in Appendix E.

The first phase entailed matching all the header sheets for both stages to make sure that the data punched was correct. It also required a 100% verification of the header sheets themselves to double check all the directional information on the total and sample volumes. Also all the start and finish times as well as the dates and location numbers had to be checked. It was surprising how many mismatches occurred between TRK1A and TRK1B. The relationship used to link the two parts of the header sheets were match 1 which were based on the location, the date, the starting time and the finishing time.

The second phase concerned the computation of the first weight, i.e. the weight based on the sample volume divided by the total volume by vehicle,

by site. This entailed a link - LINK1B - between TRK1B and the free speed data BFSP. LINK1B was linked on location start date and the time of the free speed. A special linking case had to be used for Western Australia because of the 24 hour recording. The relational link used was WA1.

Phase three created the matched Q-flow weights based on a linkage of BFSP and AFSP1 via the relationship QLINK12.

Finally, phase four output the linked header sheet information via LINK1A and the special case WA1A to BFSP and output all the variable required for the statistical analysis to an ascii file ready for input to SPSS.

The relational richness and speed of ZIM made this complex database task a lot less painful than using other database software such as SIR, ORACLE or dBASE III.

III.3 Weighting Functions

The original specification for the truck speed study included the collection of total traffic volumes passing the survey site during the sample period. The rationale for collecting the total traffic volumes at each stage was that the subsequent stages of the study could be weighted up by the total traffic volume observed during the before stage, i.e. Stage 1. Thus if during Stage 2 the total traffic volumes observed were half that of Stage 1 due to seasonal influences, time of the year or whatever, then by applying a weight the observed sample volumes could be adjusted accordingly.

Appendix C contains a detailed account of the weighting procedures examined. The nett result of this examination was that <u>ALL results</u> reported in this report are UN-WEIGHTED.

Table 3.1 Total number of Vehicle Free Speeds surveyed by State, Study stage and Vehicle type

BEFORE survey, October 1986

SAMPLE SIZES

STATE	<pre># of sites</pre>	Cars	Cars towing	Motor cycles	Buses	Light vans	Rigid Trucks	Artic trucks	TOTAL sample	Total volume	Sample fraction
NSH	12	2859	97	53	88	393	288	1063	4833	10950	44.1*
VIC	9	1954	115	13	190	92	776	2595	5735	23003	24.9*
OLD	10	4847	162	66	95	276	571	533	6550	12826	51.14
HA	7	1888	264	22	55	73	147	614	3663	3863	100.0%
SA	9	2835			61		227	681	3804	5263	72.3*
TAS	2				8		179	142	329	329	100.0%
ACT	2	2266	68	27	34	133	243	114	2885	3240	89. 8 %
Total sample	51	16649	7 8 6	181	523	967	2431	5742	27199	58081	46.84
Total volume		44423	343	482	664	2032	2996	7141	58081		
Sampling fracti	on	37.5%		37.6%	78.8%	47.64	81.1*	80.4%	46.8%		

FIRST AFTER survey, April 1987

SAMPLE SIZES

STATE	# of sites	Cars	Cars toving	Motor cycles	Buses	Light Vans	Rigid Trucks	Artic trucks	TOTAL sample	Total volume	Sample fraction
NSH	12	2416	66	48	67	347	255	1023	4214	12754	33.0*
VIC	9	951	88	15	140	80	391	1445	3110	13800	22.5*
QLD	10	4682	153	56	89	240	502	424	6066	12658	47.9*
WA	7	2829	235	42	35	56	158	647	3193	3193	100.0%
SA	9	2788	248	27	58	18	244	67 0	4053	5685	71.3*
TAS	2	964	32	4	14	34	99	80	1227	1227	100.0*
ACT	2	2646	49	39	25	141	176	112	2588	4187	61.8*
Totel sample	51	15787	871	223	428	916	1825	4401	24451	53332	45.8*
Total volume		39946	1588	585	537	2276	2517	5963	53332		
Sampling fraction	on	39.5%	54.8%	44.2%	79.7 %	40.2%	72.5%	73.8%	45.8%		

•

SECOND AFTER survey, October 1987

STATE	# of sites	Cars	Cars towing	Motor cycles	Buses	Light vans	Rigid Trucks	Artic trucks	TOTAL sample	-Total volume	Sample fraction
NSW	12	2353	67	30	61	29 0	264	1141	4206	12749	33. 8 %
VIC	9	91 0	133	15	96	124	319	1287	2884	12005	24,01
QLÛ	9	4884	153	57	127	226	446	482	6375	12957	49.24
WA	6	2122	325	41	58	75	193	784	3598	3598	100.03
SA	9	2616	294	31	62	75	248	661	3979	573 8	69 44
TAS	2	1625	44	4	21	63	111	127	1995	1995	100.0%
ACT	5	2369	47	29	24	118	117	112	2816	4019	70.1%
Total sample	49	:5879	1063	2 0 7	449	971	1690	4594	25853	52986	48.8%
Total volume		30950	1758	444	52 0	2191	2342	5771	52986		
Sampling fraction)n	42.3%	60.1%	45.5%	Sc 31	44.34	72.2	79.6%	48.8%		

SAMPLE SIZES

Notes:

1) Many sites had more than one recording session. The total number of recordings were: Stage number

1 94 2 72

3 70

2) There are 6 missing cases in Stage 3.

(3) Free speeds - a vehicle to vehicle gap of at least 4 secs.

(4) Results reported above are un weighted.

(5) Stage 1, cartow total traffic volume is incorrect

as supplied. No explaination available.

(6) Stages 1.2 & 3, total volumes for WA and TAS are presumed to equal

sample volume.

Table 3.2.: Percentage of Vehicle Free Speeds surveyed by State, Study stage and Vehicle type

BEFORE survey, October 1986

% of Row TOTAL sample

STATE	Cars	Cars towing	Motor cycles	Buses	Light v a ns	Rigid Trucks	Artic trucks	TOTAL sample
NSW	59.2%	2.0%	1.14	1.7	8.1%	6.0%	22. 0 *	4833
VIC	34.1%	2.0%	.2%	3.34	1.6%	13,5%	45.2	5735
GLD	74 0 *	2.5%	1.0*	1.5%	4.2%	8.7%	8.1*	6550
NA	61.6%	8.6%	.7\$	1.84	2.4%	4.81	20.01	3063
SA	74.54	. 0%	. 8%	1.64	. 64	6.0%	17,9%	3804
TAS	.0*	. 0%	. 0%	2.4*	. 0%	54.4%	43.24	329
ACT	78.54	2.44	. 9%	1.2*	4.6%	8.4%	4. 0%	2885
Total sample	61.2%	2.6%	. 7%	1.9%	3.6%	8.9%	21.1*	27199
Total volume	76.5%	.64	. 81	1.1*	3.5%	5.2*	12.3%	5 80 81

FIRST AFTER survey, April 1987

% of Row TOTAL sample

STATE	Cars	Cars towing	Motor cycles	Buses	Light vans	Rigid Trucks	Artic trucks	TOTAL sample
NSW	57.3%	1.64	. 98	1.6*	8.2%	6.1*	24.3*	4214
VIC	30.64	2.8%	. 5%	4.54	2.6%	12.64	46.54	3110
OLD	75,9%	2.5%	. 9\$	1.5*	4.0%	8.3%	7.0*	6066
HA	63.3%	7.4%	1.34	1.1*	1.8%	6,9*	20.34	3193
SA	68.84	6.1%	.7%	1 4	. 68	6.0%	16.5%	4053
TAS	78.6*	2.6%	. 3%	1.1*	2.8%	8.14	6.5%	1227
ACT	79.1*	1,9%	1.5%	1.0%	5.4%	6.8%	4.3%	2588
Total sample	64.6*	3.6%	. 9%	1.8*	3.7%	7.5%	18.0%	24451
Total volume	74,9%	3.0%	.9%	1.0%	4.3%	4.7%	11.24	53332

SECOND AFTER survey. October 1987

.

¥ of	Ro⊌	TOTAL	sample

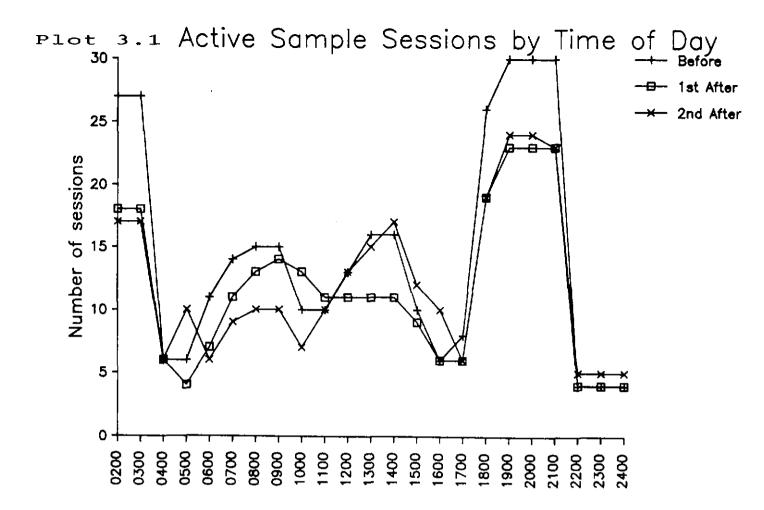
STATE	Cars	Cars towing	Motor cycles	8uses	Light vans	<i>Rigid</i> Trucks	Artic trucks	TOTAL sample
NSW	55,94	1.6%	. 7%	1.54	6.9%	6.3%	07.1%	4206
VIC	31.6*	4.6%	. 5%	3.3	4.3%	11.14	44.6%	2884
QLD	76.64	2.4%	91	2.01	3.5%	7.01	7 51	6375
WA	59.0%	9.0%	1.1	1.6%	2.1%	5.44	21.2%	3598
SA	65.7%	7,4%	.8%	1.64	1.9%	6.0%	16.6%	°0.7¢
TAS	81.5%	2.2%	. 23	1.1%	3,2%	5.64	6.4%	1205
ACT	84.1%	1.7%	1.01	. 9%	4.2	4.24	4.0°	281 6
Total sample	65.3%	4.1%	. 8%	1.7%	3.8%	6.5%	17 y	25353
Total volume	75.4%	3,3%	. 81	1.0%	4.1%	4.4*	10 -	52985

Notes: (1) % or Row totals displayed above have been computed using the Total sample (Row total) as the denominator. Example. Cars, NSW, Stage 1: 59.2% = 100 * 2859/4833. (2) 'Motor Vehicle registrations in Australia', ABS publication # 9304.0. For Westren Australia, the number of registrations are listed below.

		\$ of
	N	total
Cars	746000	86.1%
Motor cyc	362 90	4.24
Buses	6000	.7*
Rigid trucks	65 900	7.64
Artic trucks	4700	. 5%
Other trucks	76 00	. 94

866400

Time of day	Before	1st After	2nd After
<u> ଅ</u> ଷ୍ଠ ହ	21	12	11
0100	23	15	13
0000	27	18	17
2300	27	18	17
0400	6	6	6
0500	6	4	10
<u>ଷ</u> ଳ୍ପତ	1 1	7	6
ର ଅନ୍ୟର	14	11	Ŷ
0200	15	13	10
Ú C C	15	11	10
1007	1 🖸	13	7
0.7	10	11	10
-12C	1.3	11	13
1700	1 +	11	15
1400	16	11	17
1500	ΙØ	q	12
1600	6	б	10
1700	3	6	6
1800	26	19	19
1900	30	23	24
2000	30	23	24
2100	30	23	23
22 00	4	4	5
2300	4	4	5
2400	4	4	5


Table 3.3: Number of active sample sessions by time of day

.

.

Note:

(1) Bessions are not contiguous on any one day. They are spread over a time period of upto 1.5 months duning each study stage.

IV.1. Issues examined

There are eight major groups of questions which can be examined in relation to aggregated mean free speeds and speed differentials⁷. These are:

a. Any effects of legislation. **

What effect, if any, has the legislative change had upon free speeds of trucks? Legislative change can be generalised to include changes in speed limits and police enforcement practices.

b. Speed differential. **

Its effects on platooning, queue lengths, vehicle mixes and traffic volumes. Are there any trends before and after, specifically with Western Australia.

c. Speed vs Traffic Volumes. **

Examine speed vs traffic densities in terms of Q-flow rates. This then leads into weighting and whether weighting should be by total volumes or Q-flow based weights. Are there more appropriate weighting systems that should be used?

d. Speed measurement effects. **

Are there any effects on free speeds by using radar vs amphometers and infra-red light beams such as those used in Western Australia. This can also lead to an examination of the automatic classifier argument from Victoria.

e. Sampling Effects.

The effects of the sampling methods used on the free speeds. Look within States by location by sampling methods and examine the sorts of variability exposed. Are trucks under-represented in the sample vs ABS registered vehicles data ?.

f. Road Environment.

The overall effects of any of the road environment factors such as speed limits, visibility, weather, road type etc. which have been included on all the header sheets.

g. Speed vs Other Studies. **

Speed vs other time series collected by other observers. The South & Western Australian time series and the two previous

⁷ Those marked with a '**' have been examined in this report.

studies by Loong et al. and Maisey.

h. Day of the Week.

The day of the week, time of the day and date effects. How have the mean free speed distributions been affected by the sample design. This also leads into weights.

i. Overtaking rates. **

Examine and if possible extend the work done on overtaking rates from the speed differential data available in the data.

IV.1.a. Statistical assumptions

Early on in the analysis of the free speed data it became apparent that there were problems with the aptness of the analysis of variance model for the free speed data. Various symptoms emerged from this early exploratory analysis.

a. Simple ANOVA (analysis of variance) assumes a balanced design i.e. the cell sizes are all equal. Tables 4.1 through 4.7 show that the cell sizes for comparisons between means are never equal. Thus the analysis of variance design which should be used in this instance is an unbalanced design.

The ANOVA statistical procedures available in most statistical packages such as SPSS assume balanced designs. Few statistical packages have ANOVA procedures for handling unbalanced design. One such is the SAS GLM function.

- b. In carrying out our initial ANOVA tests we noted continually that the test for the homogeneity of the variance i.e. the constancy of the error variance across factor levels (using the Bartlett test), failed. Thus the error variance was found to be non homogeneous.
- c. When carrying out two-way ANOVA of free speed by State and stage, quite often there would be significant interaction effects without significant main effects.
- d. A visual inspection of the shapes of the error distributions often indicated that the distributions were non normal. Subsequent testing using the K-S test confirmed these observations.
- e. The independence of the observations and error terms was called into question because the free speeds are recorded serially. Tests for the presence of serial or auto correlation confirmed that the free speeds were auto correlated because the speed of the following vehicle was related to that of the lead vehicle. This was despite the definition of a 'Free speed' which called for at least a 4 second gap between vehicles.

Tables 4.8 and 4.9 show the extent of this auto correlation in the free speed data. The auto correlations coefficients were $\emptyset.15$ and higher and statistically significant.

The conclusion drawn from this assumptions analysis was that the

error terms were not independent. As a demonstration of this see plot C2 in Appendix C which contains the auto correlation coefficients for articulated vehicles in New South Wales. This is fairly typical of correlation plots obtained.

Summary:

- 1. The vast bulk of the free speed distributions were found to be nonnormal. Thus the error distributions were found to be non-normal.
- 2. All the speed distributions were found to contain significant levels of auto correlation. Thus the error terms were not independent.
- 3. In the bulk of cases the error variance across factor levels was found to be non homogeneous.

Thus we concluded that the ANOVA model was not appropriate for testing the free speed data. We relied instead on nonparametric procedures⁶ for testing the hypotheses on free speed.

IV.1.b. Assumptions matrix

Tables 4.8 and 4.9 contain the complete summary of all the testing which was done on the free speed data for both all-roads and two-lane to verify the aptness of the application of normal distribution based parametric statistic. There are two columns in Table 4.8 and 4.9. The first column corresponds to the significance tests for the K-S test of the normality and the second column is the significance tests for the presence of auto correlation in the data.

The rows of the Table 4.8 and 4.9 correspond to the results matrix Table 4.10, in that they contain the sub-groups which were tested. i.e. vehicle type by State etc.

An illustration of this is quite simple: If the mean remains constant, say from stage 1 to stage 2, but the variance decreases, the 85th percentile speeds should also decrease and travel towards the mean. Equally if the variance increases then the 85th percentile should move away from the mean.

The mean for cars in Stage 1 was 100 kph. standard deviation was 12.9; in Stage 2 the mean was 101 kph and the standard deviation was 13.4. Thus the variance had increased, the mean had only shifted by 1 kph. So you would expect the 85th percentile to increase as well. But the 85th percentile remained constant at 114 kph. In Stage 3 the mean dropped by 2 kph to 99 kph, the variance remained the same as stage 2 but the 85th percentile only dropped by 1 kph.

The 85th percentile measure is therefore not an appropriate measure of change in speeds where the underlying distributions are not normal.

⁸ One consequence of this casualty of the switch to non parametric procedures was the 85th percentile. It is not a statistically appropriate measure to use because it assumes normal distributions.

Table 4.8 demonstrates that the bulk of the groups tested had distributions which were non normal and there were significant levels of auto correlation present. The exceptions were articulated vehicles in the States of Queensland, Tasmania and the ACT.

IV.2. Results: Aggregated free speeds

·····

The analysis of the free speeds results will be broken into two sections; ALL roads and 2 lane only roads. The All roads analysis will cover all the survey sites in the study while the 2 lane analysis will only consider those which were 2 lane divided or undivided roads. Table 4.4 outlines the site numbers of the survey sites in all three study stages included in this definition.

IV.2.a. Aggregated Mean Free Speed Results - All roads

In all the previous studies reviewed in the literature the principal emphasis of the investigation has been to discern differences between the mean tree speeds of vehicles across time and to use this as a means of assessing the change in vehicular free speeds.

The principal emphasis of this study is to examine the effect if any of the legislative increase in the truck speed limit on rural roads from 80 km/h to 90 km/h on January 1, 1987 in every State except Queensland. The study aims to use the changes in mean free speeds to gauge whether there has been any significant effect of this legislative change upon driver behaviour and road safety.

The imputation of a cause or link between legislative change and any change in vehicular speeds needs very careful statistical scrutiny. The use of a control State such as Queensland and also the use of cars as a control group as proposed by Maisey (Maisey 1983) are two experimental design features which are built into this study.

There are however, a large number of confounding factors beyond the control of this study which have not been investigated. A further complication is that a number of States have changed their speed limits. Victoria for instance, changed its rural freeway speed limit from 100 to 110 km/h in June 1987, mid-way through the study. Western Australia which already had a 90 km/h speed limit on the Eyre highway for trucks at the beginning of the study changed that speed limit to 100 km/h on 1 January 1987. The control State Queensland had a 90 km/h speed limit for articulated vehicles during the entire study.

Other confounding factors included the various policing activities of the States police forces (blitzes etc.) which may have occurred at various times on various roads during the period of the study.

IV.2.a.1 Conclusions - ALL roads

Tables 4.1 through 4.3 summarise the mean free speed results by vehicle type, study stage and State for ALL roads surveyed.

- a. Over all study stages there has been an increase in mean free speeds of all vehicles. The means change from 96 to 97 to 97 km/h in stages 1, 2 and 3 (Table 4.1, 4.2, 4.3). This increase in mean free speeds⁹ is statistically significant (see Table 4.10, section 1.2 ¹⁰).
- b. The mean free speed for all articulated vehicles increased across the three study stages from 90 to 92 to 94 km/h. This increase in mean free speeds is statistically significant (Table 4.10, section 2.2).
- c. The mean free speeds for articulated vehicles increased in the States of New South Wales, Victoria, Queensland and South Australia as outlined in plot 4.1. These increases were statistically significant (Table 4.10, section 2.31, 2.32, 2.33 and 2.35).
- d. The change in the mean free speeds for articulated vehicles in the ACT and also in Western Australia was statistically significant (Table 4.10, section 2.37 and 2.34). Western Australia experienced a net increase and the ACT experienced a net decrease. The apparent decrease in the mean free speeds in Tasmania for articulated vehicles (see plot 4.1) was not statistically significant (Table 4.10, section 2.36). Thus the results for Western Australia and ACT were equivocal.
- e. The mean free speeds for cars over all study stages remained stable. This is illustrated in plot 4.2. There were no statistically significant effects of stage for cars as outlined in Table 4.10, section 3.2.
- f. The only States which had statistically significant changes in mean free speeds for cars were South Australia, Tasmania and ACT (Table 4.10, sections 3.35, 3.36, 3.37). Plot 4.2 shows that South Australia experienced an increase and Tasmania and ACT experienced decreases in mean free speeds.
- g. Mean free speeds of cars for all other States remained stable across the study stages. There was no statistically significant change in the mean free speeds across the stages for these States (see Table 4.10, sections 3.31 through to 3.34).
- h. The percentage of all vehicles travelling faster than 90 km/h increased from 66 per cent through to 69 per cent to 68 per cent. Similarly, the percentage of vehicles travelling faster than 100 km/h for all vehicles increased from 37 per cent through to 40 per cent through 39 per cent (Tables 4.1-4.3).

⁹ Mean free speeds are reported to rounded integers in kilometres per hour because the data reported to FORS from the field was to that accuracy. Thus the error bars should be plus or minus Ø.5 kph.

¹⁰ Table 3.4 contains a matrix of statistical test results. The section numbers refer to the decimal numbers beside the main effect variables. Thus section 1.2 refers to the overall effects section 1, main effect of study stage (1.2).

28

- i. The percentage of articulated vehicles travelling faster than 100 km/h increased in New South Wales, Victoria. Queensland and South Australia. Plot 4.3 illustrates this.
- j. The percentage of articulated vehicles travelling faster than 100 km/h was equivocal in all other States. See plot 4.3. The percentage of cars travelling faster than 100 km/h increased marginally in New South Wales, Victoria, Queensland, Western Australia and South Australia. The increase was quite small as illustrated in plot 4.4.

An overall summary which springs from the analysis is as follows:

- 1. Articulated vehicle mean free speeds increased in four States as did the percentage travelling faster than 90 km/h.
- 2. Car mean free speeds remained stable with some slight increases in VIC and WA.
- 3. The control State QLD which did not increase its truck speed limits also experienced an increase in articulated vehicle mean free speeds.
- 4. The control State Queensland reflected the long term creep in heavy vehicle speeds.

IV.2.b. Aggregated speeds for two-lane roads only.

In the previous result section we examined the aggregated speeds for allroads. It became apparent that it was very important to create a separate differentiated category of two-lane divided or undivided roads and analyze separately from all roads. The rationale for doing this was as follows:

- a. The all-roads analysis contains a mixture of speed limits despite the reporting of a single speed limit in Table 4.1 through to 4.3. A case in point is New South Wales and Victoria where the freeway speed limits are higher than those on two-lane roads. The speed limits on the two-lane roads are far more homogeneous and do reflect the speed limit reported in Table 4.5 through to 4.7. The net effect of this mixture of speed limits in the all-roads analysis was that the net speeds could be inflated by the presence of higher speed limit roads such as freeways. This homogeneity also extends to the Q-flow rates as illustrated in Tables B10-12 (Appendix B).
- b. From the safety perspective the impact of any changes in driving behaviour, especially of articulated vehicles, would be far more pronounced on two-lane undivided and divided roads than on freeways. On freeways there are more opportunities for overtaking large vehicles than on two-lane undivided roads. ...us any adverse affects of the legislative change should be more pronounced.
- c. In the next analysis section we look at the concept of speed differentials. These are only applicable in this study to twolane roads. The rationale is that to compute speed differential requires a single queue of vehicles which for simplicity will only occur on a two-lane road. Thus for completeness the analysis of

aggregated speeds on two-lane roads is included so that it can be compared with the analysis of speed differentials on the same roads.

Table 4.4 contains a list of the site numbers that constitute the survey sites which were defined as being two-lane for the purposes of this analysis. Tables A1. A4 and A7 show precisely which roads and their site characteristic have been included. The definition used was two-lane carriageway divided or undivided.

The two-lane roads contain approximately one third of the total sample of vehicle free speeds.

IV.2.b.1. Conclusions - 2 lane roads

Comparing Table 4.1 through to 4.3, that is the all-roads speed analysis with Table 4.5 through to 4.7 for the two-lane only speed analysis, a number of points emerge.

- a. Over all study stages there has been a slight increase in mean free speeds of all vehicles. The means changed from 96 km/h to 97 km/h and then to 97 km/h in Stages 1. 2 and 3. This increase in mean free speeds is statistically significant. (See Table 4.10) result 1.2 for two-lane roads ¹¹)
- b. The mean free speeds for articulated vehicles over all study stages increased from 90 to 93 to 95 km/h. This increase is statistically significant. (See result 2.2 in Table 4.10)
- c. Mean free speeds for articulated vehicles increased in all States except Tasmania and the ACT. Plot 4.5 depicts this result and these increases are statistically significant. (See result 2.31 through to 2.35 in Table 4.10)
- d. Mean free speeds for cars over all study stages decreased from 102 to 100 to 99 km/h. This decrease was statistically significant. (See result 3.2 in Table 4.10)
- Mean free speeds for cars increased in Western Australia. Plot
 4.6 depicts this result and this increase is statistically significant. (See result 3.34 Table 4.10)
- f. The mean free speed for cars decreased in Tasmania and ACT and this result was statistically significant. (See result 3.36 and 3.37)
- The percentage of articulated vehicles travelling faster than 90 km/h increased in all States except Tasmania. (See plot 4.7)
- h. The greatest increase in the percentage of articulated vehicles travelling faster than 90 km/h was experienced in South Australia where it rose from 23 per cent through to 31 per cent through to 31

¹¹ In table 3.4, the second column gives the statistical test result for 2 lane roads. Column 1 provides the corresponding results for all roads.

50 per cent by stage 3 (See plot 4.7). This increase was statistically significant.

- i. The percentage of cars travelling greater than 90 km/h increased in the States of New South Wales. Victoria and Western Australia and decreased in all other States. (See plot 4.8)
- j. The percentage of articulated vehicles travelling greater than 100 km/h increased in the States of New South Wales. Western Australia and South Australia (See plot 4.9). These increases were statistically significant. There were marginal increases in all other States except Tasmania which decreased.
- k. There was no consistent change in the percentage of cars travelling greater than 100 km/h (See plot 4.10). Victoria increased its percentage in a single step and Queensland and South Australia and the ACT decreased in a single step.

An overall summary which springs from the analysis is as follows:

- 1. Articulated vehicle mean free speeds increased in all States except Tasmania as did the percentage travelling greater than 90 km/h and 100 km/h.
- Car mean free speeds remained fairly stable across the three stages with a slight increase in Western Australia and slight decreases in Tasmania and ACT.
- 3. The control State Queensland, which did not increase its truck speed limit, experienced an increase in articulated vehicle mean free speeds as did other States.

IV.2.c. All roads vs 2 lane roads conclusions

Comparing the ALL roads analysis (IV.2.a.) with the two-lane roads, analysis (IV.2.b.) we find:

- A. that the mean free speeds results by vehicle type. State and stage are virtually identical.
- B. the overall differences between the all-roads and the two-lanes in terms of the mean free speeds overall are not dramatic. As an indication the overall means for all-roads for stage 1, 2 and 3 were 96, 97 and 97 km/h which was identical to the overall means for the two-lane roads for each of the three stages.

The standard deviations for the all-roads tended to be slightly lower than the standard deviations for the two-lanes. This to be expected given the smaller sample sizes in the two-lane roads. However, the standard deviations did not vary markedly. They were generally only 1 km/h higher than the all roads. Please check Table 4.1 through to 4.3 and Table 4.5 through to 4.7 for comparisons.

C. Articulated vehicle mean free speeds are very close. For instance, for all-roads the means in stage 1, 2 and 3 were 90, 92

and 94 km/h, whereas for the two-lane roads articulated vehicles they were 92, 93 and 95 km/h. The standard deviations were virtually identical. Thus for articulated vehicles there were very small differences between the all-roads and the two-lane roads.

D. A further comparison for articulated vehicles between all-roads and two-lanes based on the percentage greater than 90 km/h and the percentage greater than 100 km/h is also warranted. Again looking at Table 4.1 through to 4.7 the percentages of vehicles greater than 90 km/h tends to be around about 3 per cent higher overall on the two-lane roads than it does on the all-roads and the percentage greater than 100 km/h tends to be about 2 per cent higher on the two-lanes than the all-roads for articulated vehicles. These differences are not statistically significant.

Thus in summary the comparison between the all-roads and the two-lanes at the gross mean and percentage levels are not starkly different.

IV.2.d. Platooning - 2 lane roads

A platoon is a queue of vehicles immediately following a lead vehicle which is acting as a block in the traffic stream. The definition of free speeds precludes measuring the speeds of platoon members because they are within 4 seconds of another vehicle. This analysis has been restricted to two lane roads only (see Table 4.4).

IV.2.d.1. Platoon length by Speed category of platoon leader

An analysis of platoon lengths by the speed category of the platoon leader produced the following results:

Articulated vehicles - October 1986 to October 1987.

a. for articulated vehicle lead platoons where the platoon length was one vehicle, platooning was reduced by 67% in the <= 80 km/h speed category and 42% for the 81-90 km/h speed category (plots 4.14, 4.16 and Table 4.12). This may be due to the reduced number of articulated vehicles travelling at this slow speed.

b. platooning in all other platoon lengths for articulated vehicle lead platoons halved for the $\langle = 80 \text{ km/h} \text{ and } 81-90 \text{ km/h} \text{ speed categories}$.

c. there was no substantial change platooning for any other speed category above 90 km/h.

Cars - October 1986 to October 1987.

d. for car lead platoons the platoon reductions experienced by articulated vehicle were dramatically reversed. Plots 4.13 and 4.15 along with Table 4.11 illustrate the size of this reversal.

e. for platoons of one vehicle, platooning increased by 333% for the <= 80 km/h speed category, 205% in the 81-90 km/h speed category and 77% in the 91-100 km/h category.

f. the picture of increases outlined above was reproduced for most of the other platoon lengths.

Summary:

* Platooning of car led platoons has increased by 63% across all speed categories between October 1986 and October 1987. This increase straddles the legislative change in January 1987.

* The constituents of these car led platoons are unknown. The long term safety consequences of this increase is unknown.

* During the same period there was a 31% decrease in articulated le d platoons across ALL speed categories.

IV.2.e. Mean free speeds and Sample sizes by Time of day

The sampling specifications put out by FORS at the beginning of the present study included references to time of day and day of week. However, from a statistical perspective the sample design was not rigorous and the sampling of time of day and day of week were left to the States.

Thus the results presented below may simply be sampling abberations.

Time of day:

a. the night time mean free speeds (2100-0500 hrs) (95 km/h) for articulated vehicles was 5 km/h higher than the daytime mean free speed (Table 4.14, plot 4.12). Maisey (Maisey 1983) also noted this effect.

b. the mean free speeds of articulated vehicles were greater in stage 3 than in all other stages over most time periods.

c. the night time mean free speeds (2100-0500 hrs) (105 km/h) for cars was 5 km/h higher than the daytime mean free speed (Table 4.13, plot 4.11).

d. there was very little change in mean free speeds for cars between the three study stages across the time periods. Thus cars acted as a credible control group.

e. The free speed window between cars and articulated vehicles has increased from 0 km/h in stage 1 to 14 km/h in stage 3.1^2

¹² The speed window is the degree of overlap between the minimum and maximum speeds for cars and articulated vehicles. The following table illustrates this.

Vehicle type	Minimum, Maximum Stage 1	speeds (kph) Stage 3
Cars	98 - 10 7	95 - 108
Artic	86 - 97	90 - 109
Window (kph)	Ø	14

Sample sizes:

f. the volume of articulated vehicles measured in this study peaks between 1800 and 2100 hrs. The lowest volumes are around 1000 hrs (plot 4.18).

g. the volume of cars peaks between 0800 and 1500 hrs. The lowest volumes are between 2200 and 0600 hrs (plot 4.17).

Summary:

- * Articulated vehicles have the roads to themselves at night and this period also corresponds to the highest mean free speeds for articulated vehicles. Thus the low volume of traffic and possible reduced police enforcement levels at night may give rise to these elevated truck speeds.
- * Prior to the legislative change the mean free speeds of articulated vehicles did not overlap the mean free speeds of cars. The speed window was 0 km/h. This speed window has now widened considerably to 14 km/h and may go part way in explaining why there has been such an increase in car led platooning.

IV.2.f. Sampling Bias

Sampling bias resulted from the less than rigorous sampling design of this study and the lack of control that FORS had over the State field teams.¹³ The sources of bias were:

- * seasonal effects
- * economic activity and its demonstrated effects on road transport
- * day and week of the year
- * day of week effects in the replications of the three study stages
- * time of day effects in the replications of the three study stages
- the interaction of time of day and day of week
- * road environment factors i.e. road type and surface
- * police activity
- * environmental effects i.e. weather

The first step in any sample design exercise is to find any information which will assist in the design. The availability of population

The window values = Max (artic) - Min (cars). If the value is negative, set to 0.

See table 3.53 & 3.54 for the maximum and minimum values.

¹³ It should be noted that in all the previous studies of truck speeds cited in the literature review, scant attention is paid to sample design. It is important that any future studies address this critical issue in detail. descriptions of vehicle types by traffic volume by road type would be an example of such information. This then could be used to decide on the sampling strategy and in estimating the sampling parameters.

Unfortunately. no such data was available at the time of writing this report. Thus we decided instead to document the character of the sampling which took place in this study.

To begin with, the sample distribution of vehicle types differed markedly between the States and from the overall expected distribution of registered vehicles (see Table 3.2). Section III.1.b. discussed this issue and pointed out that:

"The survey design is such that statistically we cannot say with any confidence that the sample is representative of the Australian vehicle population. Clearly, trucks have been over sampled, but to what extent is unknown. The effects of time of day and the number of active sampling sessions have contributed substantially to this bias."

The sampling characteristics of Western Australia are of importance as it was one of the only States which had 24 hour sampling. The effects of time of day have been eliminated in the WA sampling. Plots 4.19 and 4.20 are the sample sizes by time of day for cars and articulated vehicles in WA.

One could assume that because WA used 24 hour sampling, then its sampling distribution should be "typical" of the population distributions for cars and articulated vehicles. However, the WA sampling distributions (plots 4.19 and 4.20) bear little resemblance to the over all sampling distributions as described by plots 4.17 and 4.18.

Thus it would appear that either the WA sampling distributions are not "typical" of the expected distribution of vehicle types by time of day or that time of day has seriously confounded the sampling used in this study. Further, as Maisey has noted, truck speeds tend to be higher during the night time than the daytime hours. Thus it appears that not only have trucks been over sampled due to the elevated number of sampling sessions during the night (plot 3.1), but that this could also have biased the mean truck speeds reported in this study upwards.

IV.2.g. Overtaking rates.

In the paper titled "Overtaking rates on low volume roads" by Troutbeck (Troutbeck 1981) a most interesting traffic model is developed. It can be used to estimate the number of overtakings by a vehicle of type A around vehicles of type B on low volume road.

Thus the expected overtaking rates of cars going past trucks or articulated vehicles can be calculated. The mathematical model developed is well documented by Troutbeck, is not complex and may be sufficient to gauge the likely interactions between vehicle types on two-lane roads.

It could be used to determine suitable routes for large volumes of articulated vehicles. Quoting from the abstract:

"the model developed gives a simple method of estimating the rate with which faster vehicles catch up to slower vehicles. It relates catch-up rates and overtaking rates on a homogeneous road section with vehicles travelling at constant speeds and with the uniform flows along with section traffic flows and speed parameters."

The caveat is that the model is only applicable to roads with low traffic volumes less than 150 vehicles per hour.

In this preliminary analysis the survey sites in Western Australia will be used as they all have traffic volumes of less than 150 vehicles per hour, are two-lane roads and have very good quality speed recordings using infra-red light beams.

One of the assumptions made by Troutbeck (from the abstract) is that

"the time the driver spends following other vehicles before overtaking is short in comparison with the journey time and that catch-up rates can be equated with overtaking rates. The model can be used as a tool for a selection of appropriate routes for road train operations and can be extended to the calculation of passenger car equivalents using the Walker method."

The beauty of this model is that it is based on well established probability distributions such as the cumulative probability distribution of the normal and gamma distributions. It dovetails beautifully with the work quoted above on speed differentials, i.e. vehicle duets and the mean speed differences between them. The work done on speed differentials above could, if extensively analyzed in relationship to overtaking rates, be used as an excellent calibration device for Troutbeck's work.

Some other assumptions that the model makes are:

- * it is based on traffic travelling at uniform speeds
- * constant flow rates
- * long sections of a homogeneous road

Consequently the model may give unacceptable answers when applied to short sections of road which are different in character to adjacent sections. (Troutbeck 1981, 15)

The equations used to develop the overtaking rate displayed in Table 4.19 and also in plot 4.28 are drawn from Troutbeck's paper (1981) based on equation 11 (Troutbeck 1981, 7)

 $OR_{ab} = K_a . K_b . S_a . (gamma)_{ab}$ (11)

This gives the overtaking rate (overtakings/hour/km of road) of vehicle type A overtaking vehicle type B as a function of the flow rates of vehicle types A and B (K_a , K_b), the standard deviation of vehicle type A (S_a) and a coefficient (gamma)_{ab}.

The coefficient $(gamma)_{ab}$ can be set equal to a fixed function F(z) (equation 14, (Troutbeck 1981, 8)) if all type B vehicles travel at the same speed U_b and thus the value of $(gamma)_{ab}$ can be derived directly from Table I (Troutbeck 1981, 5). The value of z (equation 15, (Troutbeck 1981, 8)) is equal to

 $z = (U_b - V_a)/S_a$ (15)

were V_a is the space mean speed of vehicle type A.

A slightly more complex overtaking rate can be computed using equation 11

where the value of $(gamma)_{BD}$ is not set equal to F(z) because the assumption of the constancy of speed of vehicle type B is not made. Although preferable, this value has not been computed for this report.

Thus the overtaking rates displayed in Table 4.19 are those of cars overtaking articulated vehicles. It assumes that the articulated vehicles are all travelling at a uniform speed where the uniform speed has been set equal to the articulated vehicles mean free speed.

Table 4.19 contains the overtaking rate (overtakings/hour/km) for cars overtaking articulates and the site location number, the mean free speed, standard deviation, sample size and the flow rate (veh/hr) for each vehicle type.

Plot 4.28 shows that sites 300 and 303 have experienced substantial increases in the overtaking rates. At site 300 for instance, overtaking rates have doubled from 0.1 overtakings per hour to 0.2. Site 301, the Eyre Highway which has been looked at in more detail in previous sections, only experienced a very moderate increase in overtaking rates.

What significance does a change in the overtaking rates have in relation to the safety outcome of reducing road fatalities and increasing road safety?

The overall rationale for the speed limit change was to decrease the speed differentials between cars and articulates and thus reduce the perceived need by car drivers to overtake trucks.

A series of hypotheses emerge which could be tested:

1. the relationship between speed differentials and overtaking rates would possibly be a linear function with a positive slope. As speed differentials decrease so should overtaking rates.

2. the relationship between overtaking rates and the number of fatal crashes on a given road should be linear with a positive slope. As overtaking rates decrease so should the number of fatal crashes.

Referring to plot 4.28 and for site 301 (the Eyre Highway) and referring back to the Eyre Highway analysis (section IV.4) with reference to plot 4.30 the following points emerge:

1. that the parallel increases in both car and articulated vehicle speeds that were noted on the Eyre Highway are not linked with a dramatic rise in the overtaking rates (plot 4.28).

2. this parallelism between the increase in articulated vehicle speeds and car speeds for site 301 is reflected in the fact that the speed differential between the two vehicle types has remained. Overtaking rates for this site have remained fairly stable as a result.

3. site 300 has experienced a doubling in its overtaking rates. As Troutbeck himself says (Troutbeck 1981, 18)

"The overtaking rates calculated using the model in this report indicates that the percentage of overtakings involving trucks increased rapidly as the percentage of trucks is increased."

4. Table 4.19 for site 300 shows that the speed differential between

cars and articulates has remained fairly constant at around about 9 km/h but that the flow rates for articulated vehicles have changed. They have gone from 6.7 veh/hr in stage 1 to 11.2 veh/hr in stage 3 which is nearly a 100 per cent increase. Cars by comparison have only risen by 2 veh/hr.

Thus it would seem that the doubling in the overtaking rates experienced at site 300 is a result of a doubling in the number of articulated vehicles on the road at site 300.

5. As a result of (4) above, a further relationship between overtaking rates and the percentage of heavy vehicles present on the roads can be entertained. It suggests that there will be a positive relationship between the percentage of heavy vehicles and the overtaking rates. Troutbeck plots just such a relationship (which is curvilinear) in figure 5 of his paper (Troutbeck 1981, 19).

What is now needed to further explore the utility of overtaking rates as a predictive indicator of the relative crash risk of a road is to relate the change in the overtaking rates for the period of the present study (October 1986 to October 1987) with site specific numbers of crashes or fatalities. This could be used to test Troutbeck's proposition in figure 5 of his paper.

If such a relationship could be shown then changes in overtaking rates may be a more refined indicator of overall road safety than the concept of speed dispersion.

Overtaking rates not only take into account speed differentials but also use the variance in vehicle speeds and most importantly the flow rates of the vehicle types on the roads. Thus more information is incorporated into the predictive index than just the difference between the mean speeds of two vehicles as is the case with speed dispersion.

Further work really needs to be done and overtaking rates promise to be a very promising indicator of general road safety.

IV.3. Speed differential results - 2 lane roads

Speed differentials are defined as the free speed difference between sequential pairs of vehicles which are within two minutes¹⁴ of each other travelling along a single lane of carriageway. The first vehicle of a vehicle duet is called the lead vehicle and the next sequentially following vehicle is the following vehicle.

These sequential duets formed 'mixes' of vehicles. Thus a car leading followed immediately by another car is called a 'Car - Car' duet or vehicle mix. Table 4.15 contains the vehicle mix matrix used in this study. There are seven (7) vehicle types leading to forty nine (49)

¹⁴ The vehicles included here are 'Free Speed' vehicles (greater than 4 second gap) and thus exclude platoons.

Also note that because the sampling design was less than perfect, there may be substantial bias in these results.

possible mixes of vehicle types. Each mix is assigned a mix code number from 1 to 49.

This data is restricted to two lane road sites. This was done to ensure that the sequential data was queued. Multi lane roads were excluded because queuing could not be ascertained from the data. Table 4.18 provides a list of the site numbers included under this definition:

A positive speed differential means that the lead vehicle is travelling faster than its following partner. A negative speed differential infers that the lead vehicle is travelling slower than its following partner. Thus, the following vehicle is catching up to the lead vehicle.

The concept of speed differentials was developed for this study because the authors were unhappy with using the concept of 'speed dispersion' which is so often cited in the literature for a number of reasons:

a. Statistically speaking, 'dispersion' refers to the variance of the free speeds. Thus ambiguity enters the discussion early.

b. Speed dispersions have been computed by subtracting the aggregated mean free speeds of the vehicles of interest. For instance (referring to Table 4.5) the speed dispersion of cars and articulated vehicles (all States combined) for the before analysis is 102 km/h - 90 km/h = 12 km/h.

Using Table 4.15 and looking at both Car - Artic and Artic - Car speed differentials. the differentials are 9.7 km/h and -10.4 km/h respectively for the same study stage across all States.

This comparison highlights two further points.

i. The aggregated speed dispersion figure of 12 km/h is larger in absolute terms than either of the speed differential mixes for the same vehicles.

ii. The speed differential presents two further pieces of information not available from 'speed dispersion'.

(1) The mix can be differentiated into the two logical mix types - cars followed by articulated vehicles and articulated vehicles followed by cars and

(2) the sign of the speed differential indicates whether the lead vehicle is pulling away from the following vehicle or not.

Speed differentials contain far more information about the individual dynamics of 'speed dispersion'.

IV.3.a. Descriptive analysis

Table 4.15 contains the mean speed differentials for the top twelve vehicle mixes sorted by frequency of occurrence for each of the study stages. The conclusions drawn are as follows:

a. the Car - Car mix dominates speed differentials across all stages.

b. the four most common mixes are:

i. Car - Car (mix 1)
ii. Artic - Artic (mix 28)
iii. Car - Artic (mix 34)
iv. Artic - Car (mix 7)

c. these four mixes reflect both the relative volumes of traffic surveyed and the comparative blocking strengths that cars and articulated vehicles have in a single lane of traffic. A car can be easier to overtake than an articulated vehicle (for the same vehicle speed) because the truck is a larger obstacle. A car however can vary its speed more than a truck and so combined with the road environment may form a difficult obstruction to overtake.

d. there was no statistically significant change in Car – Car mean speed differentials across the either study stages or States (Table 4.15, plot 4.21).¹⁵.

e. there were statistically significant changes in both Artic - Car and Car - Artic mean speed differentials across both stage and speed differential State (Table 4.15, plot 4.21). There were no significant interaction terms.

Plot 4.22 and Table 4.16 contain the mean speed differentials for each State across the three study stages. There are no apparent changes within State across stage but this is due to the swamping of these results by the Car -Car vehicle mix. Thus at this aggregated level, not a lot of insight is available.

To remedy this situation, Table 4.17 presents a further breakdown of Table 4.16 by vehicle mix. It contains speed differentials broken down by State by Stage and vehicle mix. Plots 4.23 through 4.27 illustrate Table 4.17 for the States of NSW, VIC, QLD, WA and SA.

f. testing mixes 7 and 34 separately within each State, the only State which showed any statistically significant change across study stage was NSW with mix 7 (Artic - Car).

g. focusing in on the Eyre highway for mixes 7 and 34, a planned contrast with a oneway ANOVA showed that a statistically significant difference existed between the Eyre highway and every other WA site on mean speed differential (all stages combined).

Summary:

1. The four most frequent vehicle mixes are (in order) Car - Car, Artic-Artic, Car - Artic and Artic - Car.

2. There has been a significant decline in Car - Artic mean speed differentials over the study stages by 1.6 km/h from 9.7 to 8.1 km/h.

3. There has also been a significant decline in Artic - Car mean speed differentials by 1.6 km/h from -10.4 km/h to -8.9 km/h.

¹⁵ One and two way ANOVA was used in all testing of speed differentials because they were found to be normally distributed and well behaved, statistically.

4. Cars are still travelling faster than articulated vehicles but only by 8 km/h by stage 3 of the study. This value has dropped by 2 km/h since the before study in October 1986.

IV.3.b. Comparison to aggregated free speeds

As mentioned in section IV.2.e. on mean free speeds and time of day, the speed window between cars and articulated vehicles has widened from \emptyset km/h in October of 1986 to 14 km/h one year later.¹⁶

Absolute speed differentials (ignoring the minus sign) between cars and articulated vehicles have decreased from 10 km/h to 8 km/h over the same period. 'Speed dispersion' between cars and articulated vehicles have decreased from 12 km/h to 4 km/h over the same period (Table 4.18).¹⁷

By either measure of speed differential 'speed dispersion' has been reduced over the study period. The question still remains as to whether the legislative change had any bearing on this result.

To suggest that the legislative change had any effect on the observed driver behaviour via speed differentials presumes that ALL other known factors were held constant. They were not.

Then there are all the unknown factors (improved road conditions, fleet age weather, police activity etc.) which additively may have resulted in the effects observed.

All that can be safely said is that there are no obvious safety disbenefits from the legislative change. There are some practical benefits instead for the drivers. Before the legislative change their mean free speeds were 10 km/h over the legal speed limit. It is now only 5 km/h.

IV.4 The results of the present study vs previous studies.

This section compares some results of this study with those of other comparable studies done elsewhere in Australia.

IV.4.a. Other National Studies - the FORS paper.

Two previous national studies of heavy vehicle speed limits were done in 1978 and 1983 and are summarised in the paper "Heavy Vehicle Speed Limits" published by the Federal Office of Road Safety (FORS 1985).

The present FORS study which was conducted in 1986 and 1987 in three stages, is only the third national study of heavy vehicle speed limits

¹⁶ These results are based on ALL roads, not just 2 lane roads. Thus the speed window value may be inflated.

¹⁷ Both the 'speed dispersion' figures and absolute speed differentials are based on 2 lane roads only. Thus they are comparable.

documented in Australia. Of these three national studies, the present study seems to be the most extensive in that it includes all States and Territories of Australia except the Northern Territory, whereas the previous two studies only covered the five mainland States: New South Wales, Victoria, Queensland, Western Australia and South Australia.

In comparing the present study with these previous two semi-national studies it is important to introduce a few cautionary words.

We cannot guarantee complete consistency in the data collection methodologies across the three studies. If anything the data collection methodology of the present study is an evolution of the two previous national studies and is arguably better than them. Thus in the strict statistical sense we do not have a homogeneous data collection strategy. The comparisons of the three national studies contain random fluctuations and variability induced by the data collection methodologies employed.

Table 4.20 summarises the comparative data which is available from one of the major summary Tables listed on page 31 (FORS 1985, 31). To this original Table have been added three extra cells these being for each of the three stages of the present study.

The most important issue that emerges from the FORS paper and which was one of the driving forces behind the present study is to reduce speed dispersion (based on the difference between the mean speeds). This was to be achieved by increasing the speed limit for HCV.

Plot 4.29 summarises the apparent speed differences based on the aggregated means across these three national studies. The results look impressive. For instance, in New South Wales the difference of the speed means has reduced from 15 km/h to 5 km/h since 1978. Equally impressive is Queensland which has dropped from around about 12 km/h down to about 4 km/h. This drop coincided with a reduction in the HCV speed limit from 100 kph to 90kph in 1982. Every State has had a decrease in the speed differences since 1978.

As has been pointed out earlier (section IV.1, IV.3) the imputation of speed differences based on aggregated means has statistical drawbacks due to the non-normality of the speed distributions. Thus the means may not the appropriate measure of central tendency to be subtracted to form the speed difference between cars and trucks. Equally, the use of the 85th percentile may be misleading.

IV.4.b. The Eyre Highway comparisons.

The most consistently studied stretch of road for the purpose of any longitudinal study of truck speeds is the Eyre Highway in Western Australia, site Nos. 1301, 2301, 3301 in the present study.

Table 4.21 summarises the free speed comparisons for the Eyre Highway. The original study monitored an increase in truck speed limits from 80 to 90 km/h in May 1982 through to October 1983. The present FORS study monitored an increase in truck speeds from 90 to 100 km/h. The original study was done by Gavin Maisey of the Police Department of Western Australia in 1983 (Maisey 1983).

A number of points regarding Table 4.21 follow:

1. the Eyre Highway observations were based on 24 hour surveillance. 2. exactly the same procedures were carried out in the FORS study as in previous Western Australian studies.

3. Maisey maintained that cars and motorcycles together acted as a control group for articulated vehicles.

An inspection of plot 4.30 which plots the mean free speeds for the six sample points in Table 4.21 reveals the following:

1. Maisey noted in his study from May 1982 through October 1983 that the speeds of articulated vehicles dropped from around 100 km/h to 96 km/h.

2. by comparison, in the FORS surveys of October 1986 through October 1987 the mean free speeds of articulated vehicles rose from 103 km/h to 107 km/h. The decreasing trend observed in the Maisey study has been reversed in the FORS study.

3. the mean free speeds of cars and motor cycles which were supposed to be the control group in Maisey's study paralleled the movement in the mean free speeds of articulated vehicles.

4. in the FORS study the mean free speeds of cars again mirrored very closely the mean free speeds of articulated vehicles.

The FORS study is a complete reversal of the observations which Maisey made in 1983.

Are the observed changes in the mean free speeds statistically significant across the three stages for either cars or articulated vehicles?

An examination of the statistical distributions of car and articulated free speeds showed that the distributions were normal and there is a significant level of auto correlation for the articulated vehicles. Thus the use of inferential parametric statistics in this instance is justified.

To return to the previous question, none of the observed changes in mean free speeds for either cars or articulated vehicles in the present study are statistically significant.

Conclusions¹⁸

- A. The mean free speeds for articulated vehicles decreased in study 1 from 100 to 98 to 96 km/h.
- B. The mean free speeds for articulated vehicles increased in study 2 from 103 to 104 to 107 km/h.
- C. The mean free speeds for cars mirrored articulated vehicles, more so in study 2 than in study 1.
- D. The percentage of articulated vehicles travelling faster than 90 km/h decreased in study 1 and increased in study 2.
- E. The 85th percentile for articulated vehicles decreased in study 1 and increased in study 2.

¹⁸ Study 1 refers to Maisey's 1983 study and study 2 refers to the present FORS study.

F. The observed increase in the mean free speeds for articulated and cars was not statistically significant in study 2.

Summary

The present study indicates a stasis in the speeds of cars and articulated vehicles which contrasts with the results obtained by Maisey where he found that the vehicular speeds decreased.

Plot 4.31 contains both the mean free speeds for articulated vehicles as well as the number of crashes reported in Western Australia over the same period of time. Visually there seems to be very little correlation between the number of crashes and the mean free speeds of articulated vehicles. If anything the number of crashes is slowly decreasing over a period of time and heading towards a static value of somewhere around about 50 crashes per year. By comparison the mean free speeds of articulated vehicles are climbing.

IV.4.c. The NAASRA studies in South Australia.

The South Australian free speed surveys implemented for NAASRA extend over an impressive time span from 1967 through 1985. The assistance of the South Australian officials in making the information available for comparison purposes is acknowledged.

Table 4.22 contains this time series along with the addition of the three extra points for the State of South Australia resulting from the present study.

Once more a cautionary word. Only a few of the sites used in this present study corresponded exactly with the sites used in the previous time series, 1967-1985. Interestingly enough the sample sizes look rather similar except in the case of the rigid trucks. Thus the results reported here are indicative and not perfectly consistent with the existing time series.

Plot 4.32 depicts this time series of mean free speeds. The time series for mean free speeds of cars is a steadily increasing trend and has risen from 90 km/h to about 105 km/h. Similarly the picture for articulated and rigid trucks is also an upward trend but with more perturbations en route.

Plot 4.32 could indicate improving road conditions and the characteristics of vehicles with their ability to travel faster. It would be illuminating to plot this time series up against the fatalities for the same period of time and examine the hypothesis of the link between speed and road fatalities.

The important point which emerges from plot 4.32 is that the results of the present study seem to be consistent with the apparent trends which have emerged from the South Australian time series.

Table 4.23 is a more specific Table which examines the NAASRA free speed survey of rural roads performed in 1985. The comparisons between the 1985 South Australian data and the three corresponding points for South Australia in the present study indicate a high degree of consistency in the results.

Table 4.1: Mean Free Speeds

by vehicle type, Study stage and State

BEFORE survey, October 1986

FREE SPEEDS: Mean free speeds by vehicle type by State

	Speed	Sample	Nean	Sdev	15 th	85 th	* >	•	* >	* >
	limit	size	(kph)		pctle	pctle	80 kph	98 kph	100 kph	118 kph
CARS										
NSW	100	2859	104	12.2	92	117	97.3	88.0	61.5	28.6
VIC	100	1954	101	11.5	89	113	96.7	85.4	52.4	17.1
OLD	100	4847	96	11.7	84	108	98.7	68.5	35.6	9.7
HA	110	1888	107	13.4	93	121	96.8	89.5	70.9	36.2
SA	110	2835	102	13.3	89	116	95.0	83.0	57.2	23.4
TAS	110									
ACT	100	2266	96	12.0	83	1 0 8	89, 9	66.3	31.6	9.9
Total		16649	100	12.9	87	114	93.8	78.3	49.1	19.2
Cars tow	ing									
NSW	80	97	94	12.2	81	107	86.6	57.7	29.9	9.3
VIC	100	115	94	18.9	83	106	91.3	68.7	25.2	7.0
X .D	100	162	86	12.2	73	98	64.8	38.3	11.1	1.2
HA	100	264	89	13.0	76	103	75.8	45.5	18.2	6.4
SA	110									
TAS	80									
ACT	100	68	87	10.8	75	98	67.6	32.3	10.2	1.5
Total		7 6 6	98	12.6	77	1 0 3	76.5	48.0	18.5	5.2
Motor cy	cles									
NSH	100	53	189	12.9	95	122	98.1	96.2	73.6	45.3
VIC	100	13	189	19.2	89	129	199.0	92.3	61.5	39.8
QLD	160	66	97	16.0	88	113	83.3	65.1	39.3	18.2
HA	110	22	110	12.9	97	124	95.5	95.5	81.9	50.0
SA	110									
TAS	110									
ACT	100	27	1 85	16.2	88	121	92.6	77.8	63.0	29.6
Total		181	184	16. 0	87	121	91.7	81.8	59,7	32.6
Buses										
NSW	98	88	100	10.3	98	111	95.8	85. ė	51.2	10.0
VIC	80	199	87	9.8	78	97	77.9	32.6	7.9	.5
QLD	100	95	93	8.4	84	102	90.5	63.1	17.8	1.1
WA	80	55	192	12.3	98	115	96.4	ŏ7.3	54.6	23.6
SA	99	61	94	10.9	82	165	88.5	62.3	27.9	6.6
TAS	98	8	80	14.7	64	95	50.0	25.0	12.5	.0
ACT	100	34	83	12.0	71	96	55.9	26.5	8.9	.0
Total		523	92	11.7	80	104	84.1	54.8	23.6	5.2

	Speed	Sample	Mean	Sdev	15 th	85 th	• >	•	* >	•
	limit	size	(kph)		pctle	pctle	80 kph	90 kph	100 kph	110 kph
Light Ver	15									
NSH	100	393	95	12.0	83	108	89.3	65.1	32.8	11.5
VIC	109	92	96	10.2	86	107	92.4	77.2	34.8	4.3
OLD	198	276	91	10.3	81	102	84.4	55.8	17.0	4.0
HA	110	73	95	13.0	82	109	98.4	64.4	32.9	13.7
SA	110									
TAS	110									
ACT	108	133	89	12.2	76	102	78.2	46.6	17.3	1.5
Total		967	93	11.8	81	1 8 6	86.8	61.1	26.5	7.4
Rigid Tru	icks									
NSH	80	288	89	11.9	77	182	76.4	48.3	17.0	4.2
VIC	88	776	88	9.7	78	98	78.5	37.9	9.9	1.5
OLD	98	571	87	10.8	76	98	74.8	37.3	11.4	1.2
WA	98	147	94	11.6	82	196	88.4	68.7	24.5	8.8
SA	80	227	87	11.4	75	98	69.2	35.3	11.1	2.2
TAS	80	179	83	10.8	71	94	59.2	22.9	6.7	.0
ACT	80	243	84	10.3	73	95	67.5	27.2	2.9	.0
Total		2431	87	10.9	76	99	74.6	38.4	11.1	2.8
Articulat	ed truck:	5								
VISH	80	1063	97	18.9	86	109	94.9	72.8	35.6	12.0
VIC	80	2595	86	9.0	77	96	72.1	28.6	7.2	1.0
QLD	90	533	89	9,5	80	99	84.4	45.0	12.0	1.5
WA	90	614	97	11.8	85	110	93.2	71.9	36.9	14.7
SA	80	681	87	11.1	75	98	78.2	30.6	13.1	3.5
TAS	80	142	87	10.6	76	98	70.4	38.0	9.8	2.1
ACT	80	114	85	10.2	74	96	69.3	26.3	6.1	. 8
Total		5742	98	11.2	78	101	79.4	43.3	16.8	4.8
ALL vehic	les									
NSH		4837	181	12.8	88	114	94.6	79.8	59.1	21.6
VIC		5735	92	12.3	79	185	82.3	51.1	24.0	6.8
OLD		6554	94	11.9	82	107	87.8	62.4	29.9	7.8
HA		3964	102	14.3	87	117	93.6	88.5	56.1	27.3
SA		3885	98	14.4	83	114	88.9	70.4	46. D	18.3
TAS		329	84	11.0	73	96	63.8	29.5	8.2	.9
ACT		2889	93	12.7	88	107	85.6	59.3	27.0	8.1
Total		27213	%	13.5	82	110	88.2	65.6	36.9	13.7

Notes:

-(1) Free speeds - a vehicle to vehicle gap of at least 4 secs

(2) Results reported above are un weighted.

- (3) Stage 3, there are two (2) vehicles included in the Grand N which are not in any of the vehicle code groups
- (4) Speed limits on freeways for NSW & VIC are 110 kph

Table 4.2: Mean Free Speeds by vehicle type, Study stage and State

1st After survey, April 1987

FREE SPEEDS: Mean free speeds by vehicle type by State

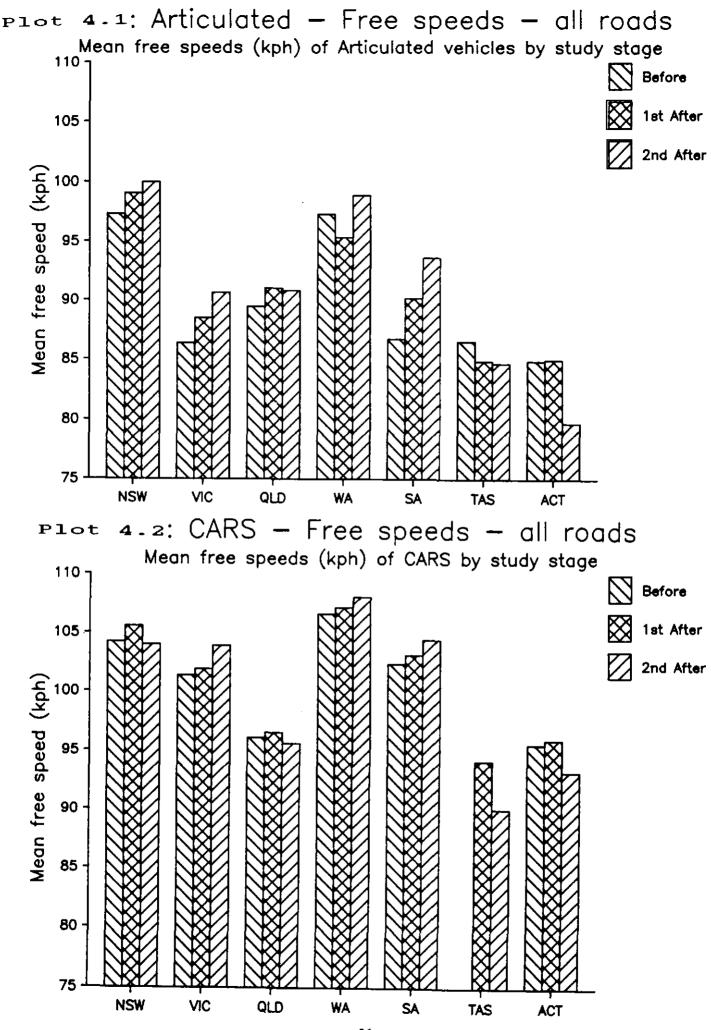
	Speed	Sample	Mean	Sdev	15 th	8 5 th	\$ >	• >	%	• >
	limit	size	(kph)		pctle	pctle	89 kph	98) kph	1 00 kph	110 kph
CARS										
NSW	100	2416	106	13.0	92	119	97.3	88.9	65.5	33.9
VIC	100	951	102	11.0	90	113	97.9	87.1	54.5	18.3
OLD	100	4692	97	11.5	85	108	92.2	69.7	36.1	10.2
HA	110	2020	107	14.9	93	122	97.1	89.6	73.6	38.6
SA	110	2788	103	13.5	89	117	94.6	84.2	60.6	28.0
TAS	110	964	94	14.6	79	189	84.3	57.3	26.8	12.4
ACT	100	2 8 46	96	11.5	84	108	91.8	69.1	31.3	8.6
Total		15787	101	13.4	87	114	93.8	77.9	49.6	21.0
Cars towi	ng									
NSW	80	66	94	11.8	81	106	93.9	57.5	27.2	9.1
VIC	100	88	94	10.3	83	105	89.8	65.9	25.0	3.4
QLD	100	153	87	18.5	76	98	69.9	35.9	10.4	.7
XAA	100	235	94	12.3	81	107	84.7	63.8	29.4	8.1
SA	110	248	91	12.8	77	104	80.6	50.0	22.2	4.8
TAS	90	32	81	12.4	68	94	53.1	12.5	3.1	3.1
ACT	100	49	89	8.9	79	98	89.8	40.8	8.1	. 9
Total		871	91	12.2	78	104	81.3	51.3	21.2	4,8
Motor cyc	les									
NSW	100	40	188	14.7	93	123	97.5	96. 6	67.5	45.9
VIC	100	15	106	8.5	97	115	100.0	93.3	86.6	26.7
QLD	100	56	101	15.8	85	118	96.4	78.5	48.1	. 14.3
HA	110	42	112	16.6	95	130	97.6	92.8	73.8	52.4
SA	110	27	119	18.2	92	129	92.6	92.6	77.8	48.1
TAS	119	4	188	10.8	97	119	100.0	100.0	109.0	25.0
ACT	100	39	103	15.9	86	119	94.9	77.8	46.2	28.2
Total		223	1 8 6	16.0	90	123	96.4	86.1	63.2	34.5
Buses										
NSW	100	67	101	10.3	98	112	95.5	86.5	59.6	10.4
VIC	90	140	91	7.4	83	98	91.4	52.1	8.5	.7
QLD	180	89	94	11.0	83	106	89.9	71.9	33.7	3.4
HA	80	35	102	14.2	87	117	94.3	88.6	62.9	25.7
SA	90	58	97	9.8	86	107	96.6	81.1	39.7	3.4
TAS	98	14	80	9.3	71	90	50.0	7.1	.0	.0
ACT	100	25	87	10.0	77	97	64.0	40.0	8.0	. 0
Total		428	94	11.0	83	1 8 6	89.7	66.3	30.1	5.1

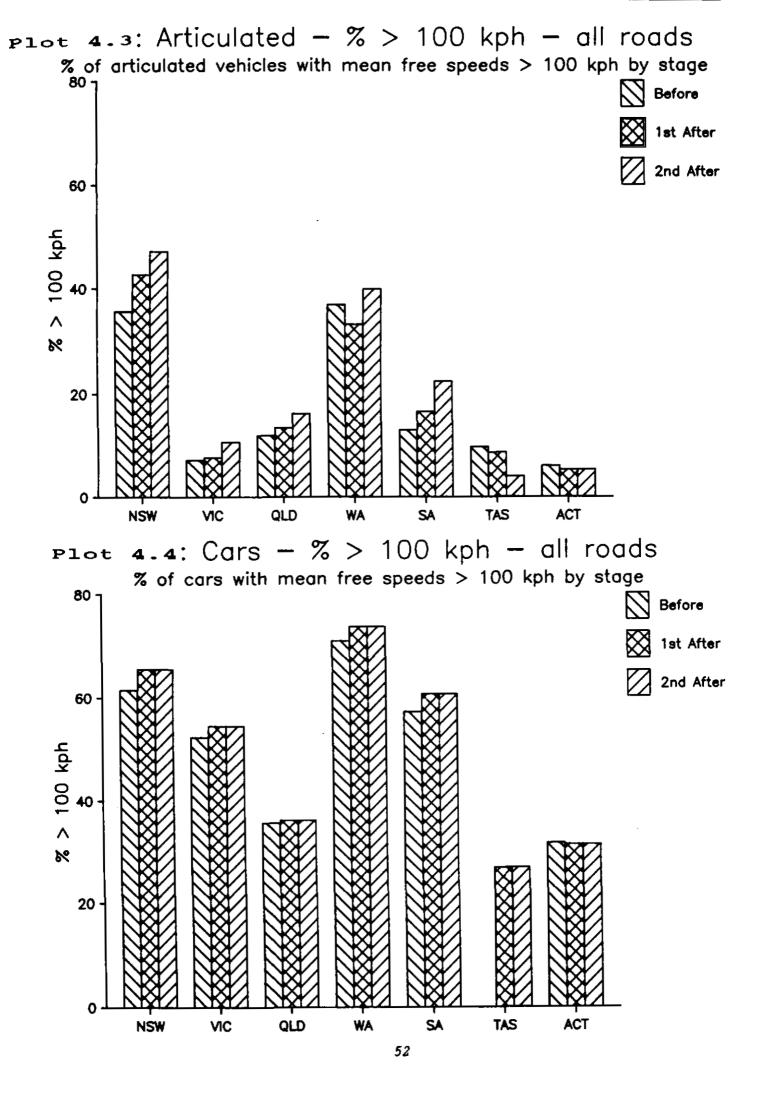
	Speed	Sample	Mean	Sdev	15 th	85 th	* >	•	* >	z >
	limit	size	(kph)		pctie	pctle	80 kph	98 kph	1 80 kph	110 kph
Light Van:	8									
NSH	189	347	97	12.1	84	110	91.9	78.9	40.1	12.4
VIC	100	80	95	11.2	84	107	87.5	71.2	36.2	7.5
QLD	100	240	94	10.9	82	165	87.9	59.6	27.9	7.5
HA .	110	56	96	9.7	86	186	96.4	64.3	37.5	10.7
SA	110	18	93	12.5	89	186	88.9	50.0	22.2	5.6
TAS	110	34	89	15.3	73	105	79.6	44.1	26.5	8.8
ACT	100	141	91	11.4	79	102	77.3	46.1	20.6	3.5
Total		916	95	11.9	82	107	87.7	62.4	32.6	9.0
Rigid True	cks									
NSW	98	255	90	11.2	78	102	80.4	43,5	16. 0	4.3
VIC	98	391	88	9.8	78	99	81.3	41.9	9.7	1.3
QLD	98	582	87	9.9	77	97	74.3	35.9	9.4	1.0
HA	198	158	96	10.7	85	107	91.8	70.3	30.4	9.5
SA	90	244	86	10.5	75	97	72.5	36.0	6.9	.8
TAS	98	99	81	11.4	69	93	44.4	15.1	5.0	3.8
ACT	90	176	85	11.1	73	96	67.6	27.8	6.8	1,1
Total		1825	88	10.9	76	99	75.7	39.4	11.5	2.4
Articulate	ed trucks									
YSH	98	1823	99	10.8	88	110	96.3	78.9	42.7	14.2
VIC	98	1445	88	7.9	88	97	87.0	36.6	7.7	.6
OLD	98	424	91	9.2	81	101	88.8	54.5	13.5	1.4
HA	100	647	95	15.4	79	111	93.8	67.3	33.1	13.0
SA	98	670	90	10.4	79	101	85.7	42.1	16.6	3.7
TAS	90	89	85	10.4	74	96	61.2	26.2	8.7	.0
ACT	98	112	85	11.7	73	97	68.7	27.6	5.3	2.7
Total		4401	92	11.5	80	184	89. 0	53.1	21.4	6.2
ALL vehicl	.65									
NSW		4214	192	13.1	88	116	95, 5	81.7	54.2	24.9
VIC		3110	93	11.2	81	105	99.0	55.4	23.9	6.5
QLD		6866	95	11.7	83	107	89.7	64.7	31.4	8.4
WA		3193	103	15.1	87	119	95.1	81.8	59.3	29.3
SA		4853	99	14.3	84	114	98. 9	72.1	47.4	20.6
TAS		1227	92	14.7	77	107	78.1	50.0	23.3	10.4
ACT		2588	94	12.1	82	187	88.1	62.6	27.5	7.6
Total		24451	97	13.6	83	112	98. 9	68.9	39.8	15.8

· ·- · ·

Table 4.3: Mean Free Speeds

by vehicle type, Study stage and State


2nd After survey, October 1987



FREE SPEEDS: Nean free speeds by vehicle type by State

	Speed	Sample	Hean	Sdev	15 th	85 th	* >	* >	* >	*
	limit	size	(kph)		pctle	pctle	80 kph	960 koh	100 kph	110 kp
CARS										
NSH	100	2353	104	12.1	91	117	97.6	88.7	61.4	27.
VIC	100	910	104	11.4	92	116	98.7	98.8	62.1	22.
GLD	100	4884	96	11.6	83	108	90.5	66.8	33.8	8.
WA	110	2122	108	11.9	96	128	98.2	92.4	77.4	39.
SA	110	2616	184	13.1	91	118	96.0	86.3	65.5	29.
TAS	110	1625	98	12.3	77	103	79.3	44.0	18.2	5.
ACT	100	2369	93	11.5	81	105	88.0	57.9	24.2	6.
Total		16879	99	13.4	85	113	92.3	73.9	46.6	18.
Cars towin	9									
NSW	88	67	96	13.3	82	110	86.6	61.2	41.8	13.
VIC	100	133	96	11.5	84	108	88.7	68.4	41.3	7.
QLD	100	153	85	11.7	72	97	68.8	28.1	8.5	
'IA	100	325	94	12.0	82	107	88.0	68.3	32.9	8.
SA	118	294	93	12.2	80	165	83.3	55.4	29.5	5.
TAS	90	44	82	11.0	71	94	54.5	18.1	2.2	2.
ACT	100	47	85	10.3	74	96	63.8	23.4	8.5	
Total		1063	92	12.7	79	105	80.3	52.0	27.7	6.
Motor cycl	es									
NSH	190	30	112	14.7	97	127	100.0	96.7	76.7	50.
VIC	199	15	183	10.4	93	114	93.3	93.3	66.6	26.
QLD	100	57	192	15.8	86	119	96.5	80.7	45.6	19.
HA	110	41	116	15.9	99	132	100.0	95.1	82.9	58.
SA	110	31	110	12.1	97	122	168.6	93.5	77.4	45.
TAS	110	4	91	12.4	78	183	75.0	50.0	25.0	
ACT	189	29	101	15.0	85	116	96.6	69.0	44.9	24.
Total		297	107	15.7	91	123	97.6	86.5	63.3	36.
<u>Buses</u>										
NSM	109	61	100	12.4		113	93.4			13.
VIC '	99	96	91	6.9	84	98	91.7	54.2	10.4	-
QLD	169	127	94	9.9	84	105	92.9	63.8	27.6	5.
HA	80	58	100	9.4	98	110	96.6	89.7	44.9	10.
SA	98	62	96	8.6	87	105	98.4	72.0	30. 6	6.
ras	98	21	78	9.7	68	88	38.1	9.5	.0	
ACT	100	24	82	9.8	71	92	45.8	16.6	8.3	•
		649	94		83	105		65.1	27.2	5.

	Speed	Sample	flean	Sdev	15 th	85 th	\$ >	* >	x)	* >
	limit	size	(kph)		pctle	pctle	80 kph	90 kph	1 00 kph	110 kph
Light Vans	•									
NSW	100	290	97	11.2	86	109	92.4	73.1	36.9	12.4
VIC	100	124	98	11.3	86	109	92.7	76.6	37.9	11.3
OLD	100	226	92	12.1	79	104	85.0	51.8	21.7	' 5.8
WA	110	75	93	12.1	81	106	86.7	60.0	25.3	5.3
SA	118	75	96	11.8	84	108	90.7	66.7	38.7	10.7
TAS	110	63	86	14.2	71	101	63.5	34.9	7.9	6.3
ACT	100	118	91	10.7	80	102	85.6	48.3	19,5	3.4
Total		971	94	12.1	81	1 0 7	87.4	61.6	28.7	8.5
Rigid Truc	ks									
NSW	9 0	264	9 0	11.8	78	102	81.8	47.0	17.5	2.7
VIC	90	319	40	9.8	79	100	81.5	46.4	14.7	.9
QLD	90	440	88	10.6	77	99	76.2	39,4	11.4	1.1
WA	100	193	96	12.1	84	109	91.7	67.3	34.1	13.0
SA	90	240	87	11.4	75	99	71.2	40.4	12,1	2.1
TAS	90	111	80	10.6	69	91	43.2	16.2	4.5	. 0
ACT	98	117	83	10.9	72	94	56.4	24.8	8.6	. 0
Total		16 90	89	11.6	77	101	75.6	42.7	15.0	2.7
Articulate	d trucks									
NSH	9 0	1141	100	9.6	90	110	98.2	83.6	47.2	14.4
VIC	9 8	1287	91	7.7	83	99	92.5	48.5	10.7	.5
OLD	9 0	482	91	10.1	80	101	84.0	52.9	16.2	2.1
WA	180	784	99	11.2	87	110	97.1	77.3	39.9	14.2
SA	90	661	94	10.5	83	105	93.3	54.9	22.4	8.0
TAS	90	127	85	9.7	75	95	69.3	27.6	4.0	. 0
ACT	90	112	80	13.3	66	94	51.8	22.3	5.3	. 0
Total		4594	94	10.9	83	1 8 6	92.3	62.3	26.7	7.5
ALL vehicle	es									
NSW		4211	101	12.2	89	114	96.1	83.1	52.6	28.9
VIC		2884	95	11.4	83	107	93.8	64.1	30.2	8.5
QLD		6375	94	11.8	82	107	88.2	62.4	29.8	7.6
WA		3598	104	13.0	90	117	96.4	84.1	61.3	28.5
SA		3979	100	13.8	86	115	93.1	75.6	51.5	21.8
TAS		1995	89	12.4	76	102	75.1	40.2	15.6	4.6
ACT		2817	92	12.1	79	105	84.5	53.9	22.4	5.8
Total		25859	97	13.2	83	111	90. 5	68.4	39.4	14.5

stg1	stg2	stg3
1001	2001	3001
1004	2004	3004
1005	2005	3005
1006	2006	3006
1007	2007	3007
1012	2012	3012
1150	2150	3150
1160	2160	3160
1170	21 70	3170
1180	2180	3180
1220	2220	3220
1225	2225	3225
1245	2245	3245
1250	2250	3250
1300	2300	3300
13 01	2301	3301
1302	2302	3302
1303	2303	3303
1304	2304	3304
1305	2305	3305
1306	23 0 6	
1400	2400	3400
1405	2405	3405
1407	2 40 7	3407
1501	2501	3501
15Ø3	2503	35 0 3
1601	2601	3601

Table 4.4: 2 lane only road location site #'s

Notes:

(1) Stg1 = Before, Stg2 = After 1, Stg3 = After 2
(2) These sites were chosen not only by being 2 lane roads only but because they were used in all three study stages (except site 306).
(3) Refer to Tables A1 through A9 for detailed site descriptions.

Table 4.5: Mean Free Speeds - 2 lane roads only by vehicle type, Study stage and State

******	=	tober 1986								
FREE SPEE	DS: Nean	free spee	ds by veh	icle type						
	Speed	-	llean				٤)			
CARS	limit	size	(kph)	dev	pctle	pctle	88 kph	949 kph	1962 kph	110 kpł
NSW	100	975	102	12.5	89	114	95.5	82.5	50.5	22.0
VIC	100	553	101	12.8	88	114	94.2	83.0	52.8	19.5
GLD	100	581	92	13.1	79	186	82.1	53.0		
HA	110	1888	107	13.4	93	121	96 .8		78,9	36.2
5 A	110	648	108	13.0	86	113	92.9	79.3	49.4	16.8
TAS	110									
ACT	100	392	99	12.9	86	113	92.9	77.3	47.5	16.3
Total		5037	102	13.8	88	116	93.7	80.9	55. 0	24.4
Cars towi	ng									
wsw	88	24	91	15.1	75	1 8 6	66.7	45.9	29.2	12.5
VIC	100	62		11,9		106	98.3		22.6	
JLD	100	25	86	9.2	76	95	68.0		4.0	
HA.	100	264	89	13.0	76	183	75.8	45.5	18.2	6.4
SA	110									
TAS	89									
ACT	100	11	88	10.5	77	99	72.7	45.4	9.8	. 6
lotal		386	98	12.7	77	183	76.9	47.9	18.4	6.2
lotor cyc	les									
ISM	188	16	194	12.3	91	117	93.7	93.7	68.7	31.3
/IC	100	2	184	31.8	70	137	109.9		58.8	58.1
ALD.		11		21.9	73	119	81.8			18.2
IA .	110	22	119	12.9	97	124	95.5			50.0
5A	110									
TAS	110									
CT	100	2	113	14.1	98	128	100.0	109.8	100.8	50.6

Buses										
NSH	98	37	99	11.6	87	111	91.9	78.4	54.1	13.5
VIC	58	47	87	18.7	76	98	78.7	27.6	10.6	2.1
QLD	100	15	86	8.5	77	95	66.7	33.4	.1	.0
HA	80	55	182	12.3	98	115	96.4	87.3	54.6	23.6
SA	98	18	95	9.9	85	186	94.4	66.6	33.3	5.6
TAS .	96	8	88	14.7	64	95	50.0	25.0	12.5	. 🖲
ACT	189	13	83	15.8	67	100	69.2	46.1	7.6	. 8
Total		193	94	13.8	89	108	85. 0	59.6	32.7	19.4

	Speed	Semple	fiean	Std	15 th	85 th	*)	t)	• >	• >
	limit	size	(kph)	dev	pctle	pctle	80 kph	98 kph	100 kph	110 kph
Light Var	15									
NSW	100	181	92	11.3	80	104	84.0	56.9	18.2	5,5
VIC	100	38	98	13.1	84	111	86.8	78.9	52.6	10.5
QLD	100	22	92	9.4	82	102	86.4	59.1	18.2	4.5
HA	110	73	95	13.0	82	109	98.4	64.4	32.9	13.7
SA	119									
TAS	110									
ACT	100	14	93	14.4	78	108	78.6	57.2	28.6	7.1
Total		328	93	12.1	81	1 9 6	85.7	61.3	25.9	7.9
Rigid Tru	icks									
NSW	80	128	86	12.0	74	99	68.0	41.4	18.1	2.3
VIC	80	189	87	10.2	77	98	74.6	39.2	8.0	1.6
OLD	90	134	83	11.9	71	96	63.4	24.6	5.9	1.5
WA	98	147	94	11.6	82	106	88.4	68.7	24.5	8.8
SA	80	37	88	11.9	76	101	73.8	4 8 .6	13.6	2.7
TAS	80	179	83	10.8	71	94	59.2	22.9	6.7	.0
ACT	80	79	90	7 .0	82	97	89.9	5 0. 7	5.1	. 8
Total		893	87	11.6	75	99	72.5	40.0	10.4	2.5
Articulat	ed truck:	5								
NSW	8 9	478	96	10.2	86	107	95.8	72.4	29.5	8.6
VIC	88	1091	86	9.3	76	96	68.0	26.8	7.6	1.3
QLD	98	115	86	9.9	75	96	69.6	28.7	8.7	. 9
WA	98	614	97	11.8	85	110	93.2	71.9	36.9	14.7
SA	80	134	85	10.2	74	95	63.4	23.1	8.2	2.2
TAS	80	142	87	10.6	76	98	78.4	38. 0	9.8	2.1
ACT	88	77	87	8.1	79	%	79.2	35. 0	6.4	. 0
Total		2651	90	11.6	78	1 8 2	79.1	46.1	18.4	5.7
ALL vehic	les									
NSW		1843	98	12.6	85	111	92.1	74.0	39. B	15.6
VIC		1982	91	12.6	78	104	77.3	45.9	21.6	6.8
QLD		983	98	13.8	76	103	77.2	45. 0	18.8	5.6
HA		3864	102	14.3	87	117	.93.6	80.5	56.1	27.3
SA		838	97	13.8	82	111	87.4	68.3	48.9	13.6
TAS		329	84	11.0	73	96	63.8	29.5	8.2	.9
ACT		5 9 2	95	13.8	81	110	88.9	66.1	34.3	11.1
Total		9551	%	14.4	81	111	86.5	65 . 8	37.8	15.6

Notes:

(1) Free speeds - a vehicle to vehicle gap of at least 4 secs

(2) Results reported above are un weighted.

(3) Stage 3, there are two (2) vehicles included in the Grand N which are not in any of the vehicle code groups

(4) Speed limits on freeways for NSW & VIC are 110 kph

Table 4.6: Hean Free Speeds - 2 lane roads only by vehicle type, Study stage and State

1st After survey, April 1987

FREE SPEEDS: Mean free speeds by vehicle type by State

	Speed	Sample	Mean	Std	15 th	85 th	* >	* >	\$ >	\$)
0480	limit	size	(kph)	dev	pctle	pctle	80 kph	90 kph	100 kph	110 kph
CARS										
NSW	100	878	101	12.2	88	114	95.4	81. 0	50.7	20.0
VIC	100	311	103	11.2	91	115	97.4	87.8	60.1	23.2
GLD	109	834	91	11.8	79	103	82.6	58.6	19.2	5.9
HA	110	2020	107	14.0	93	122	97.1	89.6	73.6	38.6
SA	110	645	99	13.7	85	113	99.5	75.3	46.6	19.2
TAS	110	964	94	14.6	79	189	84.3	57.3	26.8	12.4
ACT	198	327	99	13.5	85	114	93.3	79.2	42.2	15.6
Total		5979	188	14.6	85	116	91.9	75.5	49.8	22.9
Cars tovi	ng									
NSH	88	32	91	10.5	80	182	93.7	46.8	15.5	6.3
VIC	199	42	94	10.9	83	186	98.5	64.3	23.8	4.8
QLD	100	35	82	9.4	72	92	68, 8	20.0	. 8	.8
HA	198	235	94	12.3	81	107	84.7	63.9	29.4	8.1
SA	118	84	86	13.3	72	100	67.9	32.2	13.2	3.6
TAS	90	32	81	12.4	68	94	53.1	12.5	3.1	3.1
ACT	100	17	88	11.3	76	99	88.2	47.0	5.8	.0
Total		477	90	12.9	77	184	79.0	49.4	29.3	5.7
Motor cyc	les									
NSH	100	13	183	14.7	88	118	160.8	84.6	53.8	39.8
VIC	100	5	111	9.0	102	121	109.0	100.0	198.0	68.8
QLD	100	12	183	27.7	75	132	83.3	66.6	41.6	25.0
HA	110	42	112	16.6	95	130	97.6	92.8	73.8	52.4
SA	110	5	100	17.2	82	118	80.0	80,0	6 0. B	40.0
TAS	110	4	168	19.8	97	119	100.0	109.0	100.0	25.0
ACT	188	6	99	29.3	78	129	83.3	66.6	33.3	16.7
Total		87	188	18.2	89	127	94.3	86.3	65.6	41.4
Buses										
NSH	100	35	180	12.2	88	113	91.4	88.8	62.9	11.4
VIC	90	29	91	8.6	82	100	82.8	51.8	13.9	.0
QLD	198	8	87	9.1	77	96	87.5	25.0	12.5	
WA	89	35	102	14.2	87	117	94.3	88.6	62.9	25.7
SA	98	19	94	13.3	81	198	89.5	79, 0	36.9	5.3
TAS	90	14	88	9.3	71	98	58.8	7.1		.0
ACT	169	4	94	5.9	87	100	100,0	59.0	.•	.8
Total		144	95	13.4	81	199	86.1	65.3	38.9	9.7

	Speed	Sample	Mean	Std	15 th	85 th	٤)	* >	• •	• >
	limit	size	(kph)	dev	pctle	pctle	80 kph	90 kph	100 kph	110 kph
Light Vans	\$									
NSH	108	153	93	11.8	82	185	87.6	58.8	26.8	4.6
VIC	100	28	94	11.7	82	196	82.1	71.4	35.7	3.6
QLD	100	14	90	12,6	7 7	103	78.6	50.0	14.3	7.1
HA	110	56	96	9,7	86	106	96.4	64.3	37.5	10.7
SA	110	8	91	12.1	79	164	75.0	50.0	12.5	. 0
TAS	110	34	89	15.3	73	105	78.6	44.1	26.5	8.8
ACT	100	23	%	16.7	79	114	78.3	60.9	43.5	13,0
Total		316	93	12.0	81	1 8 6	85.4	58.8	29.7	6.6
Rigid Truc	ks									
NSW	98	111	87	9.4	77	97	75.7	32.5	9.1	.9
VIC	9 8	93	89	9.5	79	99	82.8	43.0	14.0	. 0
OLD	90	126	86	8.6	77	95	74.6	32.5	3.1	.0
HA	198	158	96	10.7	85	107	91.8	78.3	30.4	9.5
SA	90	41	82	10.5	71	93	56.1	19.5	4.9	.0
TAS	98	99	81	11.6	69	93	44.4	15.1	5.0	3.0
ACT	90	52	91	9.6	81	101	9 0. 4	50.0	15.4	1.9
Total		6 80	88	11.1	77	100	75.6	40.7	13.2	2.9
Articulate	d trucks									
NSW	98	502	98	9.3	88	108	96.6	79.5	40.3	9.8
VIC	98	644	89	8.1	80	97	88.2	38.5	8.5	.9
OLD	90	95	89	9.7	79	99	86.3	48.4	10.5	.0
HA	100	647	95	15.4	79	111	93.0	67.3	33.1	13.0
SA	98	158	87	10.5	76	98	75.3	31.6	12.6	3.2
TAS	98	80	85	10.4	74	96	61.2	26.2	8.7	.0
ACT	90	50	91	10.3	80	101	86.0	42.0	10.0	6.0
Total		2176	93	12.1	80	105	89.5	56.1	23.6	6 .8
ALL vehicl	es									
NSW		1724	98	11.8	86	111	93.7	74.8	42.4	14.1
VIC		1152	93	11.2	81	195	98.1	54.5	26.6	7.3
OLD		1124	90	11.7	78	183	81.3	47.4	16.2	4.7
HA		3193	103	15.1	87	119	95.1	81.8	59.3	29.3
SA		968	95	14.3	88	110	84.4	61.9	36.	14.1
TAS		1227	92	14.7	77	197	78.1	50.0	23.3	10.4
ACT		479	97	13.5	83	111	91.2	69.7	34.2	12.3
Total		9859	97	14.4	82	112	89.3	66.9	39.3	16.6

Table 4.7: Mean Free Speeds - 2 lane roads only by vehicle type, Study stage and State

2nd After survey, October 1987

FREE SPEEDS: Mean free speeds by vehicle type by State

	Speed	Sample	Nean	Std	15 th	85 th	• >	* >	* >	\$ >
	limit	size	(kph)	dev	pctle	pctle	80 kph	98 kph	100 kph	110 kph
CARS										
NSW	108	865	183	12.9	89	116	96.5	86.8	55.1	23.2
VIC	100	369	103	10.6	92	114	98.1	88.9	58.0	20.3
QLD	100	959	90	11.0	7 9	102	82.9	47.7	16.0	4.0
HA	110	2122	108	11.9	96	129	98.2	*92.4	77.4	39.1
SA	110	628	196	13.9	85	114	98.6	74.4	52.1	28.2
TAS	110	1625	9 0	12.3	77	163	79.3	44.0	18.2	5.3
ACT	199	677	97	12.5	84	119	92.5	71.5	39.2	12.8
Total		7845	99	14.3	84	114	90.5	71.3	46.8	20.1
Cars towi	ng									
NSH	80	20	99	12.1	87	112	95.8	75.0	55.0	19.9
VIC	100	41	97	12.0	84	189	92.7	68.3	41.5	12.2
QLD	100	44	79	11.4	67	91	38.6	11.3	6.8	.0
HA	100	325	94	12.0	82	107	88.0	68.3	32.9	8.3
SA	110	70	92	12.9	78	185	78.6	50,0	27.1	5.7
TAS	98	44	82	11.0	71	96	54.5	18.1	2.2	2.3
ACT	198	9	78	9.0	69	88	33.3	.9	. 0	.9
Total		553	92	13.2	78	196	79.9	51.9	28.6	7.1
Motor cyc	les									
NSH	100	14	189	13.7	95	123	100.0	198.0	64.3	42.9
VIC	199	3	199	6.4	93	196	199,0	188.8	33.3	.0
OLD	199	8	96	7.3	88	183	190.0	75. 🛙	25.0	. 0
HA	110	41	116	15.9	99	132	100,0	95.1	82.9	58.5
SA	110	11	109	8.6	169	118	190.0	169.9	98.9	36.4
TAS	116	4	91	12.4	78	163	75.8	59.9	25.0	.0
ACT	100	3	104	11.0	93	115	100,0	189.9	66.7	33.3
Total		84	110	15.3	94	125	98.8	92.8	70.2	41.7
Buses										
NSH	198	25	182	16.8	86	119	88.0.	84.0	64.0	16.0
VIC	90	16	92	6.8	85	99	93.7	49.9	18.6	. 0
QLD	100	12	87	8.3	78	96	75.8	33.3		.0
HA .	88	58	100	9.4	98	110	96.6	89.7	44.9	10.3
SA	90	21	96	18.9	85	188	95.2	76.2	38.1	14.3
TAS	90	21	78	9.7	68	88	38.1	9.5		.0
ACT	109	4	92	12.0	88	105	75.0	75.0	25.0	. 0
Totel		157	95	13.2	81	189	84.7	67.5	34.4	8.3

	Speed	Sample	Mean	Sta	15 th	85 th	* >	\$ >	* >	%)
	limit	size	(kph)	dev	pctle	pctle	88 kph	90 kph	100 kph	110 kph
Light Vans	5									
NSW	100	104	95	1 8 .5	84	106	91.3	68.2	31.7	6.7
VIC	168	32	97	18.2	87	108	96.9	68.8	31.3	12.5
OLD	100	12	81	18.5	61	100	50.0	25.0	16.7	8.3
WA	110	75	93	12.1	81	186	86.7	60.0	25.3	5.3
SA	110	15	91	13.0	78	105	80.0	53.3	26.6	13.3
TAS	110	63	86	14.2	71	101	63.5	34.9	7.9	6.3
ACT	100	27	98	11.9	86	110	96,3	74.1	48.2	7.4
Total		328	93	12.9	79	196	83.8	58.2	26.2	7.3
Rigid Truc	ks									
NSW	90	112	90	12.7	77	103	82.1	47.3	16.9	4.5
VIC	90	78	90	9.5	80	100	87.2	46.2	12.9	1.3
OLD	90	120	86	10.1	76	97	68.3	35.8	5.0	.0 `
WA	100	193	96	12.1	84	109	91.7	67.3	34.1	13.0
SA	90	35	85	10.2	74	95	68.6	28.6	8.6	. 0
TAS	40	111	80	10.6	69	91	43.2	16.2	4.5	.0
ACT	90	52	88	10.5	77	99	76.9	46.1	17.3	.0
Total		701	89	12.4	76	102	75.7	44.7	16.7	4.4
Articulate	d trucks									
NSW	90	559	99	8.9	99	109	98.6	82.9	45.3	12.0
VIC	90	531	89	7.5	82	97	98.4	43.1	8.3	.2
OLD	90	123	87	9.6	77	97	78.0	37,3	10.5	. 0
НА	100	784	99	11.2	87	110	97.1	77.3	39.9	14.2
SA	90	112	92	9.4	82	102	89,3	50.0	16.1	4.5
TAS	90	127	85	9.7	75	95	69.3	27.6	4.8	.0
ACT	90	49	88	10,0	78	98	83.7	40.8	10.2	. 0
Total		2285	95	10.9	83	106	92.6	63.6	28.4	8.1
ALL vehicl	es									
NSW		1701	100	12.1	88	113	95,8	81.6	48.0	17.2
VIC		1070	95	10,9	83	106	93.2	61.1	27.9	8.0
OLD		1278	89	11.1	78	101	79.3	44.2	14.1	3.1
HA		3598	104	13.0	90	117	96.4	84.1	61.3	28.5
SA		892	97	13.7	83	112	88.7	67.6	43_6	16.3
TAS		1995	89	12.4	76	162	75.1	48.2	15.6	4.6
ACT		622	95	13.1	82	109	89.5	66.0	34.8	10.3
Total		11156	97	13.9	83	111	89.2	66.7	39,5	15.6

Nain effects	s Normality	7	Auto correlation
1. ALL vehicles	<u>.</u>		
1.1 ALL vehi	icles	S	S
2. ARTICULATED	vehicles		
Within State	2		
2.31 NSW	5		S
2.32 VIC	S		S
2.33 QLD	-		S
2.34 WA	8		S
2.35 SA	8		S
2.36 TAS	-		12-45
2.37 ACT	-		S
3. <u>CARS</u>			
<u>Within State</u>	<u>e</u>		
3.31 NSV	9		S

3.31 NSW	S	S
3.32 VIC	S	8
3.33 QLD	S	S
3.34 WA	8	1-345
3.35 SA	S	S
3.36 TAS	5	12-45
3.37 ACT	S	S

Notes:

(1) notation for significance levels: s = significant, reject null hypothesis. All 5 lags had significant coefficients. - = non significant, accept the null hypothesis. All 5 lags had non significant coefficients. Where some lags were non significant, this is denoted by the notation nnnn i.e. 12-45 means that all lags except lag 3 were significant. Alpha significance level adopted = 0.05.

Table 4.8: Statistical assumptions matrix for Free Speeds - ALL roads

Table 4.9: Statistical assumptions matrix for Free Speeds2 lane roads only

Main ef	fects Norma		uto orrelation
1. <u>ALL veh</u>	icles		
1.1 ALL	vehicles	s	S
2. <u>ARTICUL</u>	ATED vehicles		
<u>Within</u>	<u>State</u>		
2.31 NS 2.32 VI 2.33 QL 2.34 WA 2.35 SA 2.36 TA 2.37 AC 3. <u>CARS</u>	C - D S S S S T -	1 1 - 1	-3 -34- 2-45 -3
<u>Within</u>			
3.31 NS		S	
3.32 VI		s -	
3.33 QL 3.34 WA		- s	
3.35 SA		S	
5150 DH	~	5	

3.36 TAS

3.37 ACT

Notes:

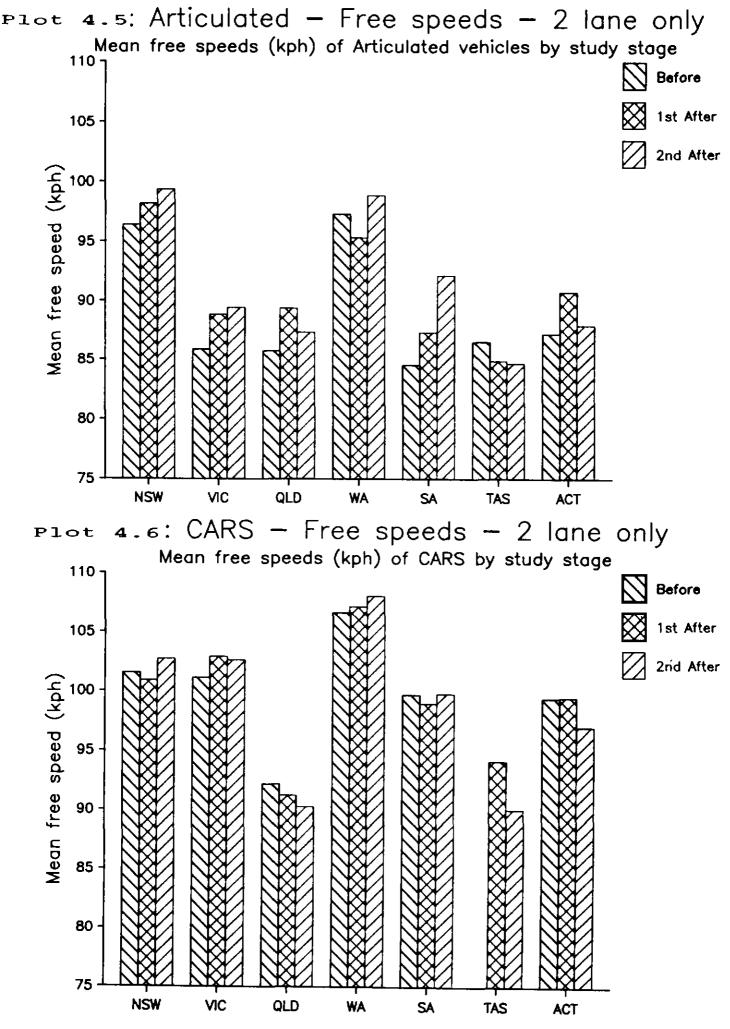
-

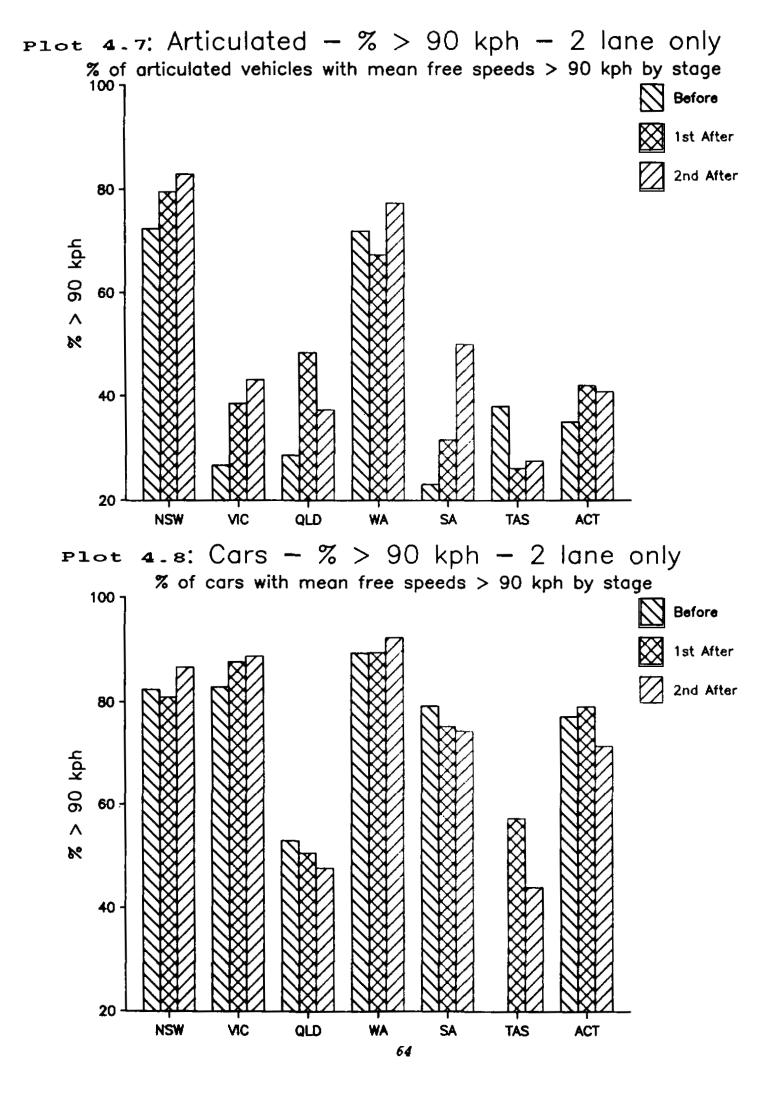
_

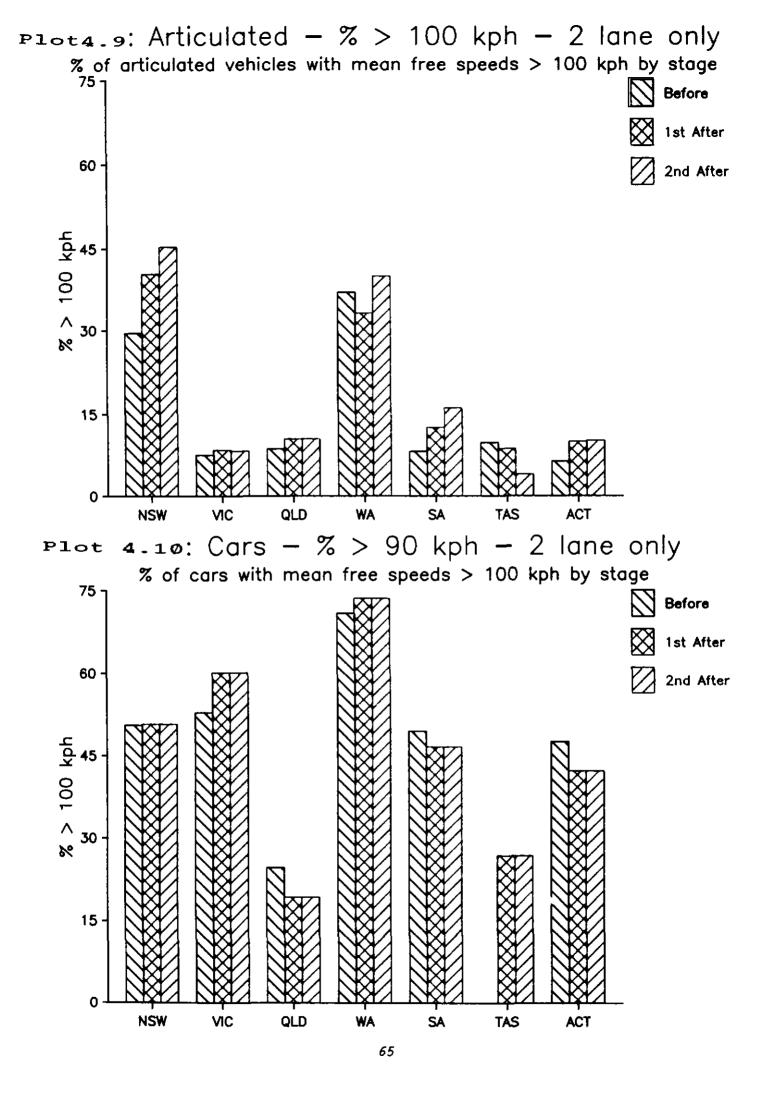
Alpha significance level adopted = 0.05.

12-45

(1) notation for significance levels: s = significant, reject null hypothesis. All 5 lags had significant coefficients. - = non significant, accept the null hypothesis. All 5 lags had non significant coefficients. Where some lags were non significant, this is denoted by the notation nn-


nn i.e. 12-45 means that all lags except lag 3 were significant.


Table 4.10: Statistical tests matrix for Free Speeds


1. Overall effects

Main effects Variables	ALL roads	2 lane roads
1.1 State	3	S
1.2 Stage	S	S
1.3 Vehicle type	S	S
1.4 Speed meter		\$
ARTICULATED vehicle	5	
Main effects		
Variables		
2.1 State	S	S
2.2 Stage	S	S
Within State effect	5	
2.31 NSW	S	S
2.32 VIC	S	S
2.33 QLD	S	S
2.34 WA	5	S
2.35 SA	S	S
2.36 TAS	-	-
2.37 ACT	S	-
CARS		
Main effects		
Variables		
3.1 State	S	S
3.2 Stage	-	S
Within State effect	<u>s</u>	
3.31 NSW	-	-
3.32 VIC	-	-
3.33 QLD	-	-
3.34 WA	-	S
3.35 SA	S	-
3.36 TAS	S	S
3.37 ACT	S	8

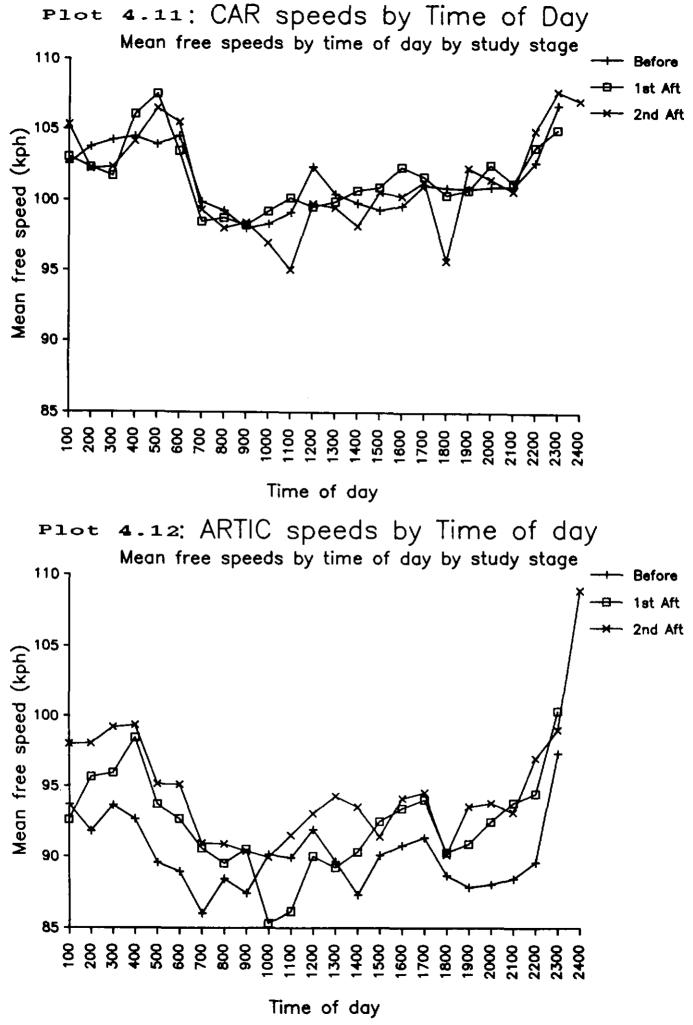
(1) notation for significance levels: s = significant, reject null hypothesis, - = non significant, accept the null hypothesis.
Alpha significance level adopted = 0.05.
(2) Within State effects denotes a oneway anova (using the Kruskal-Wallis test) of Speed by Stage within the designated State.

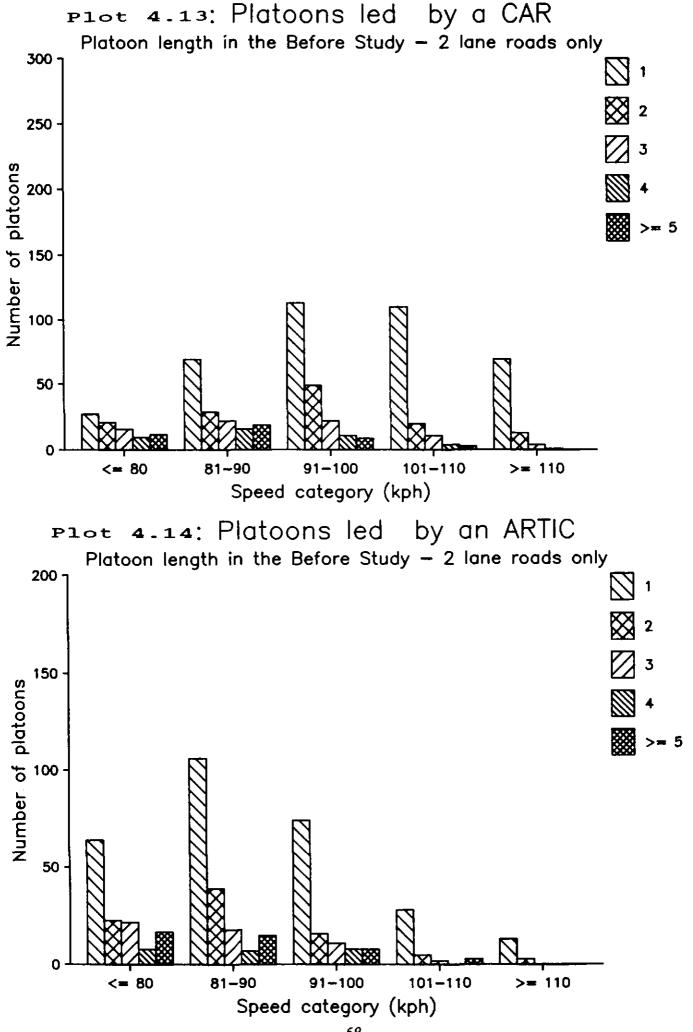
		8e [.]	fore surve	γ - Octob	er 1986		
Speed			Pla	itoon leng	th		
category	0	1	2	3	4	>= 5	To ta .
(= 80 kph	229	27	21	16	10	12	31
81-90 kph	489	69	29	22	16	19	644
91-1 00 kph	1102	113	49	22	11	9	130
101-110 kph	1393	110	20	11	4	3	154
)= 110 kph	1143	69	13	4	1	0	1230
Total	4356	388	132	75	42	43	5030
		1s;	t After su	nvey - Ap	ril 1987		
(= 80 kph	334	64	43	18	7	20	480
81-90 kph	708	140	66	33	18	14	97
91 -100 kph	1251	195	55	24	3	9	153)
101-110 kph	1457	114	23	7	2	0	168
)= 110 kph	1305	55	10	1	0	8	137:
Total	50 55	568	197	83	30	43	5976
		2nc	d After su	rvey - Oct	tober 198	37	
(= 88 kph	441	117	48	17	20	29	67:
81-9 0 kph	974	211	83	46	17	22	1353
91-1 00 koh	1428	200	53	25	5	8	1719
101-110 kph	1703	119	28	9	9	2	1861
)= 110 kph	1350	38	8	4	1	i	140
fotal	5896	685	220	101	43	62	7003

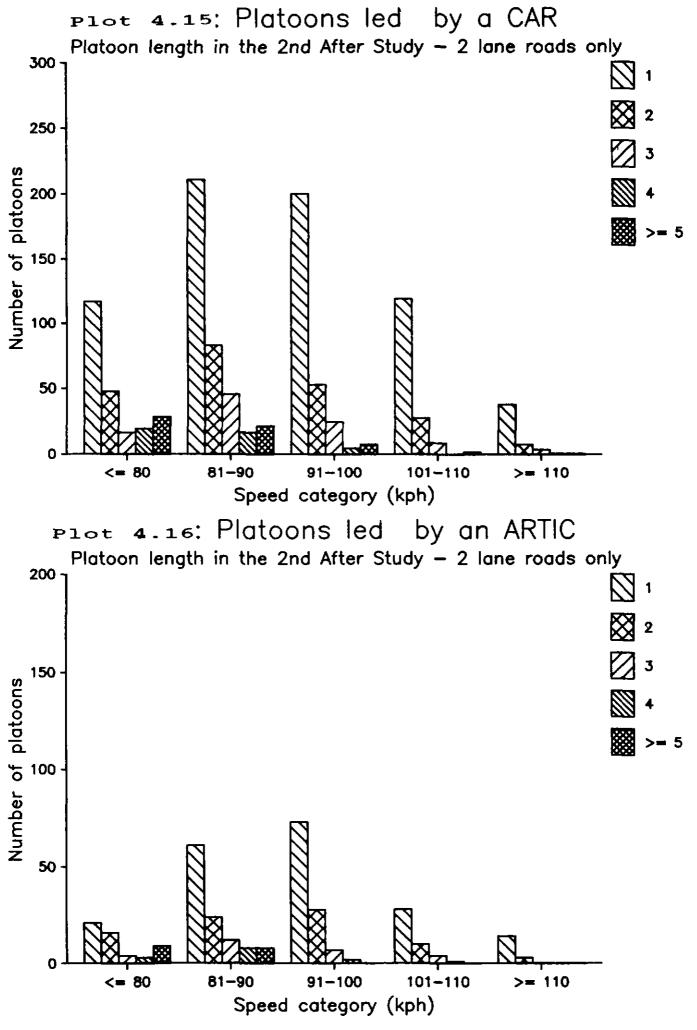
.

Table 4.11 CAR platoons by Speed category and platoon length - 2 lane roads

Note:


(1) Speed category refers to the speed (kph) of the platoon lead vehicle.

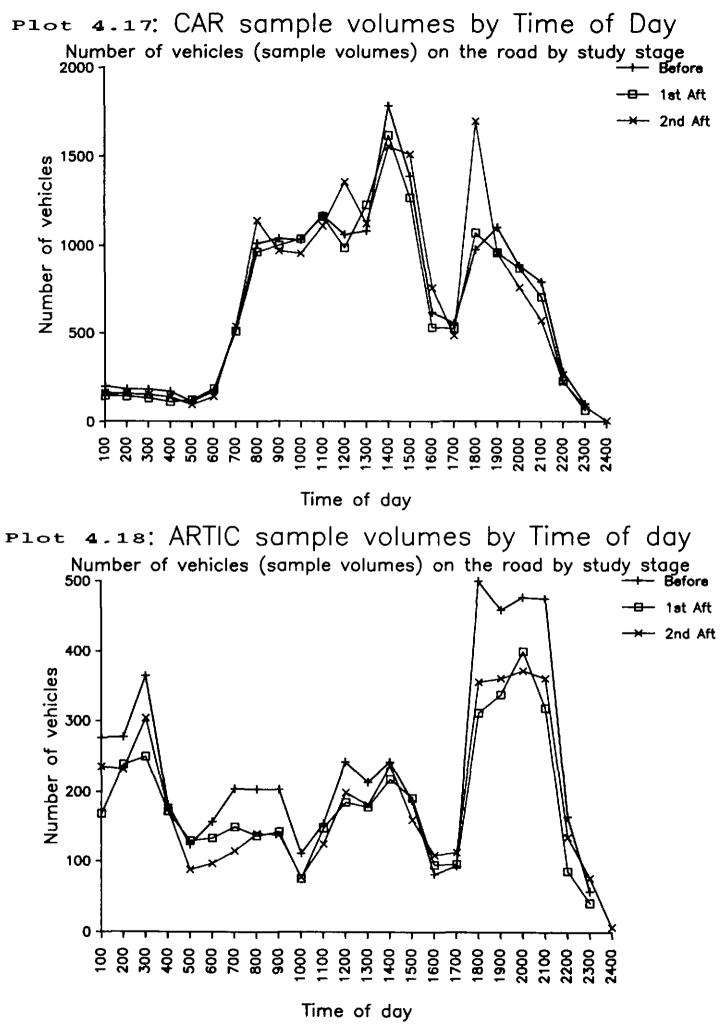

		Bet	one surve	y - Octob	er 1986		
Speed			Pla	toon leng	th		
category	0	1	2	3	4)= 5	Total
(= 80 kph	419	64	23	22	8	17	553
81-90 kph	689	106	39	18	7	15	874
91-1 00 kp	618	74	16	11	8	8	735
101-11 0 k	299	28	5	2	0	3	337
)= 110 kp	136	13	3	Ø	0	0	152
Total	2161	285	86	53	23	43	2651
		lst	After su	rvey - Api	ril 1987		
(= 80 kph	163	28	14	7	6	10	228
81-90 kph	564	97	39	12	8	7	727
91-1 00 kp	585	80	27	9	3	3	797
101-110 k	311	45	7	2	2	0	367
}= 110 kp	130	13	3	0	1	0	147
Total	1753	263	90	30	2 0	20	2176
		2nd	After su	rvey - Oci	tober 198	37	
(= 80 kph	115	21	16	4	3	9	168
81-9 0 kph	546	61	24	12	8	8	659
91-1 00 kp	692	73	28	7	2	0	802
101-110 k	420	28	10	4	1	0	463
)= 110 kp	167	14	3	Ø	0	0	184
Total	1940	197	81	27	14	17	2276


Table 4.12. ARTICULATED platoons by Speed category and platoon length - 2 lane roads

Note:

(1) Speed category refers to the speed (kph) of the platoon lead vehicle.

Table 4.13 CARs - Mean free speeds by time of day


•

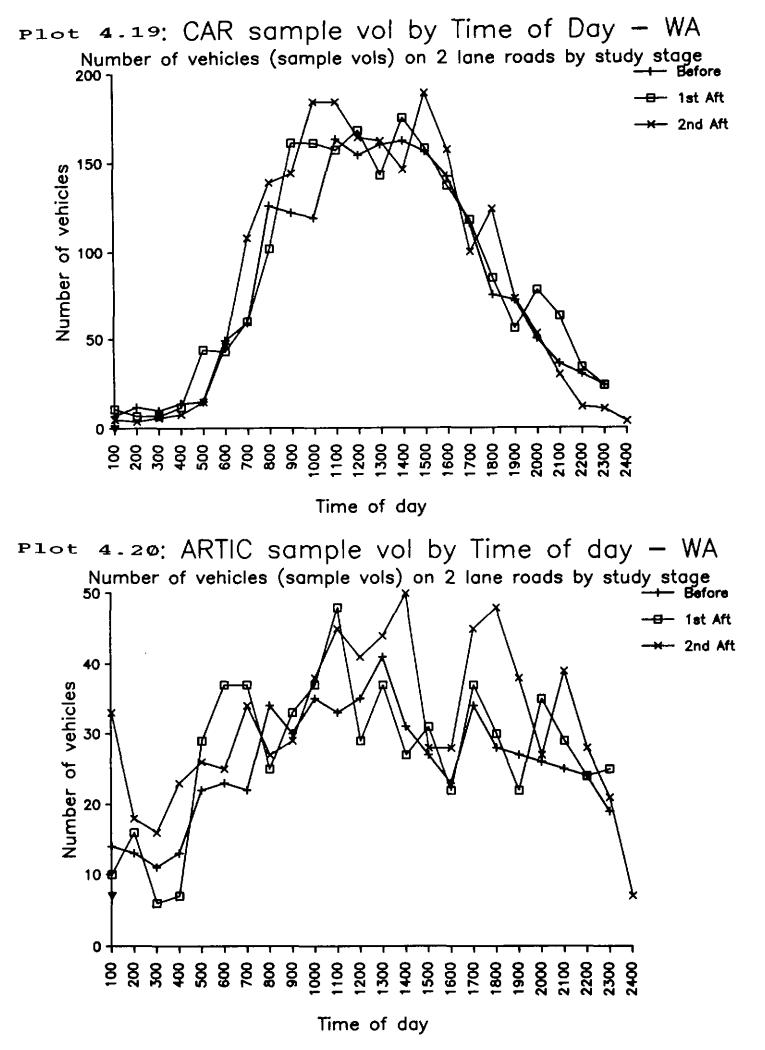

ctober 3	urvey - O	2nd After su	pril 1987	mvey – A	1st After su		1986	- October	fore survey
••••		llean		heen	hean			Nean	
N	Sdev	(kph)	N	Sdev	(kph)	N	Sdev	(kph)	Time
164	14.8	105	149	15.9	183	280	15.1	103	100
16	14.3	102	146	15.0	102	183	14.3	104	200
155	15.5	182	135	14.8	102	182	14.1	104	388
141	13.5	104	115	14.5	186	178	15.7	184	480
98	13.6	186	125	16.1	187	114	14.2	184	588
144	13.9	105	167	12.9	163	172	14.2	184	699
539	12.4	99	511	11.6	99	528	11.8	100	700
1148	11.8	98	964	11.3	99	1011	11.9	99	880
978	12.2	98	1082	12.7	98	1038	12.1	98	988
955	12.4	97	1838	13.7	99	1838	12.1	98	1900
1110	13.6	95	1163	14.6	198	1167	13.1	99	1190
1357	12.3	190	987	12.5	188	1969	12.6	162	1288
1124	13.4	99	1228	13.3	108	1888	12.0	100	1388
1556	13.1	98	1620	13.2	191	1783	12.3	108	1499
1512	12.2	101	1269	12.1	101	1388	12.9	99	1588
761	13.8	188	532	13.7	102	617	13.8	180	1600
485	13.9	101	526	13.1	102	554	13.7	101	1700
1697	14.1	96	1072	13.5	100	975	12.3	191	1800
957	13.2	102	959	13.2	101	1188	12.4	181	1900
762	13.8	191	872	14.2	102	884	12.5	101	2000
572	13.6	101	787	13.9	101	793	13.9	101	2100
225	13.7	105	231	15.8	194	289	15.0	103	2288
87	13.5	108	66	16.6	185	100	15.0	187	2388
4	15.4	197							2444
16675	13.4	99	15684	13.4	101	16409	13	100	

Table 4.14 ARTICULATED - Mean free speeds by time of day

Before survey	- Octobe	r 1986		1st After s	urvey – A	pril 1987	2nd After s	urvey - O	ctober 198
	flean	********		Hean	••••		Kean		
Time	(kph)	Sdev	N	(kph)	Sdev	N	(kph)	Sdev	N
100	94	12.3	276	93	12.3	169	98	10.7	236
200	92	12.3	277	96	12.	239	98	11.6	232
300	94	13.7	364	96	13.4	250	99	12.3	384
408	93	13.4	181	98	13.4	172	99	11.8	175
588	90	12.9	124	94	12.9	130	95	18.5	88
688	89	10.2	157	93	9.6	134	95	10.6	97
798	86	9.4	284	91	9.3	150	91	10.3	115
808	88	9.2	203	98	9.4	137	91	10.1	140
988	87	10.7	203	91	9.5	143	98	9.3	139
1000	90	11.4	111	85	17.2	75	98	12.5	77
1180	98	10.2	154	86	18.9	148	92	11.0	125
1200	92	18.7	242	9 8	9.1	185	93	11.1	199
1380	98	18.0	213	89	8.2	178	94	8.8	181
1480	87	18.6	242	98	18.9	218	93	9.8	237
1500	98	18.4	187	92	10.4	191	91	9.4	160
1600	91	18.2	81	93	9.6	95	94	9.7	109
1700	91	11.1	93	96	10.2	96	95	8.6	113
1800	89	9.4	499	90	10.3	311	98	9.9	355
1908	88	9.8	458	91	9.0	337	96	9.8	360
2008	88	10.2	476	92	10.2	399	94	11.3	371
2188	88	11.4	474	94	10.4	318	93	10.2	360
2200	98	10.2	164	94	11.2	86	97	9.5	135
2300	97	12.3	57	100	18,9	41	99	9.7	76
2488							189	8.9	7
Total	98	11.1	5440	92	11.5	4282	94	10.9	4391

•

Mix	St	age 1 - B	efore		St	age 2 - 1:	st After		Stage 3 - 2nd after			
Description	Mix	Hean	Std	N	Mix	fieen	Std	N	Mix	Mean	Std	N
Car - Car	1	. 1	14.5	2136	1	. 0	14.9	2908	1	.2	14.6	2856
Art - Art	28	. 5	10.1	798	28	. 9	10.4	659	28	7	10.0	692
Car - Art	34	9.7	13.1	624	34	7.6	13.8	556	34	8.1	13.1	649
Art - Car	?	-10.4	13.5	588	7	-6.8	13.8	529	7	-8.9	12.9	646
Car – Trk	33	9.4	12.9	253	33	9.2	13.0	303	6	-8.5	13.7	251
Trk – Car	Ь	-8.2	13.7	247	6	-8.2	12.6	285	33	8.6	13.7	246
Art - Irk	27	1.4	12.2	170	2	-7.9	14.7	191	2	-9.8	14.0	239
Trk - Art	49	7	12.3	165	29	9.4	14.1	182	29	9.4	14.0	224
Lvan - Car	5	-5.4	13.6	147	32	4.0	14.0	147	27	2.5	12.0	122
Can - Lvan	32	5.7	13.6	134	5	-5.2	15.1	143	32	7.1	14.4	118
Trk – Trk	26	. 8	12.6	110	49	-1.5	12.5	95	5	-6.6	14.6	110
Ctow - Can	2	-9.8	13.2	100	27	3.5	11.8	96	49	-2.3	11.6	100

Table 4.15 Speed Differential (kph) by vehicle mix by Stage - 2 lane roads

Notes:

(1) Legend to	> Vehicle Mix	Matrix						
		Lead	d (1st) v	ehicle	>			
2nd vehicle		30	31	32	33	34	35	36
Car	.3 0	1	2	3	4	5	6	7
Car towing	31	29	8	9	10	11	12	13
Motor cyc	32	30	35	14	15	16	17	18
8us	33	31	36	40	19	20	21	22
Light van	34	32	37	41	44	23	24	25
Rigid Truck	35	33	38	42	45	47	26	27
Articulated	36	34	39	43	46	48	49	28

(2) The vehicle mix codes link the vehicle codes, values 30 to 36.
Thus mix number 29 signifies vehicle codes 30 (Car) followed by vehicle code 31 a Car towing.
(3) Vehicle pairs were restricted to a maximum time gap between lead and following of 2 minutes.
(4) The vehicle mix order changes across the study stages.

The mix descriptions are for stage 1.

State	Mean	Std	N
Before			
NSW	.1	14.3	1551
VIC	. 4	13.8	1201
QLD	1	14.0	789
WA	.1	15.5	1345
SA	.5	14.7	697
TAS	1.1	14.2	154
ACT	.1	14.0	420
Total	. 2	14.5	6157
lst After stage			
NSW	. 2	13.9	1450
VIC	. 4	12.7	711
QLD	. 3	13.5	995
WA	.1	15.3	1392
SA	.1	16.2	800
TAS	.3	15.5	1096
ACT	.3	15.6	321
Total	. 2	14.7	6765
2nd After stage			
NSW	.1	13.6	1293
VIC	2	13.1	671
QLD	3	13.0	1159
WA	. 3	15.6	2631
SA	1	16.0	735
TAS	-		
АСТ	4	14.8	452
Total	. Ø	14.6	6941
Grand total	.1	14.6	19863

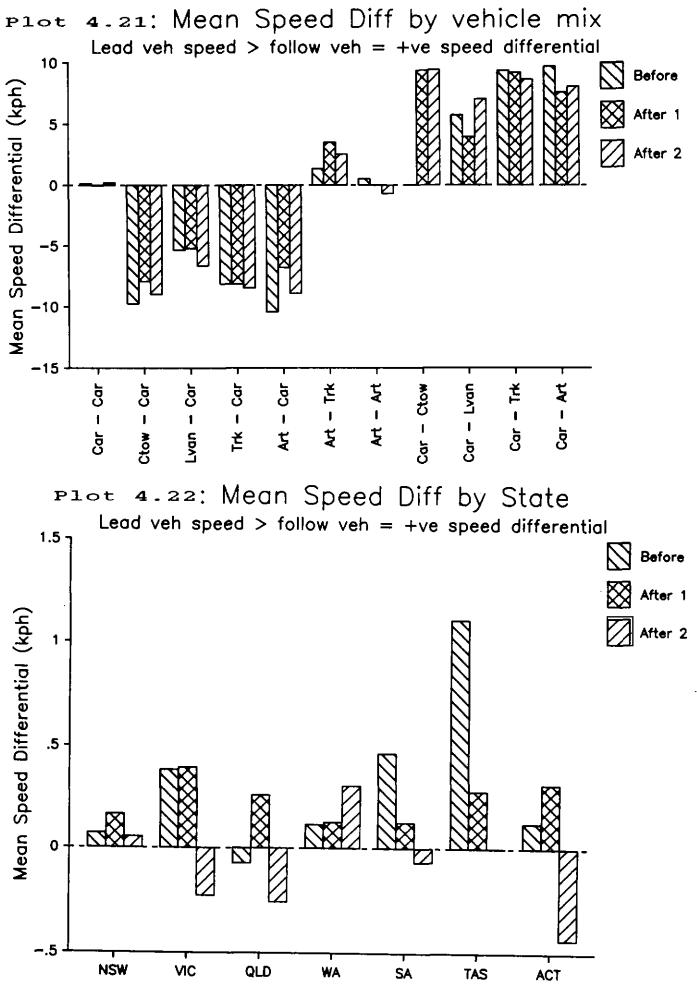
.

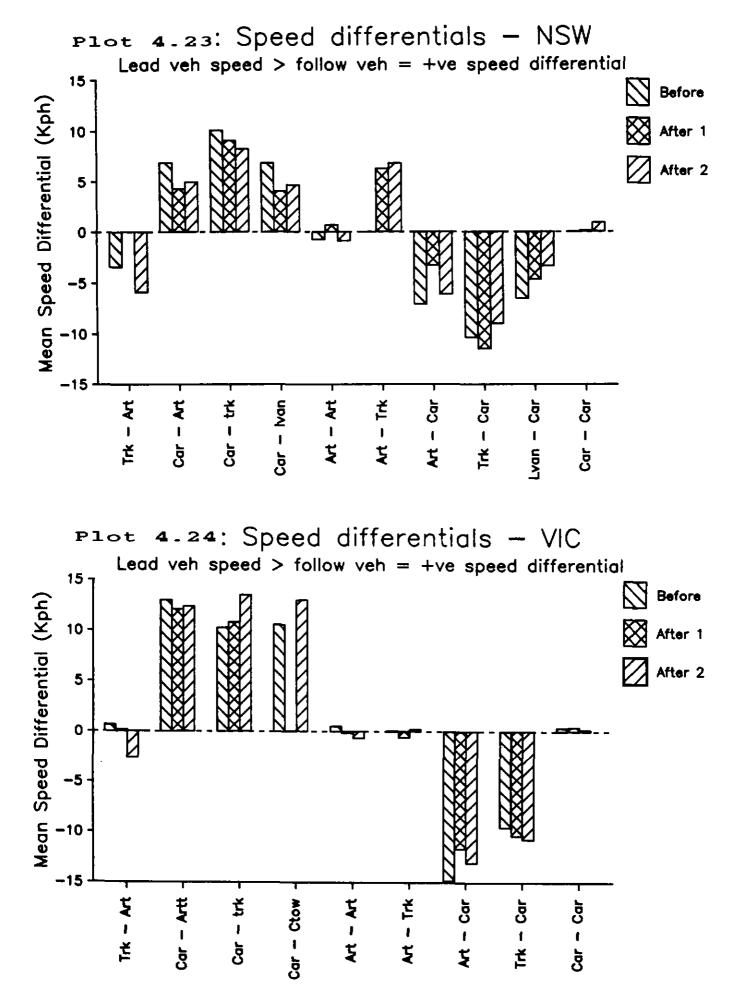
Table 4.16: Speed Differential (kph) by State. and Stage - 2 lane roads

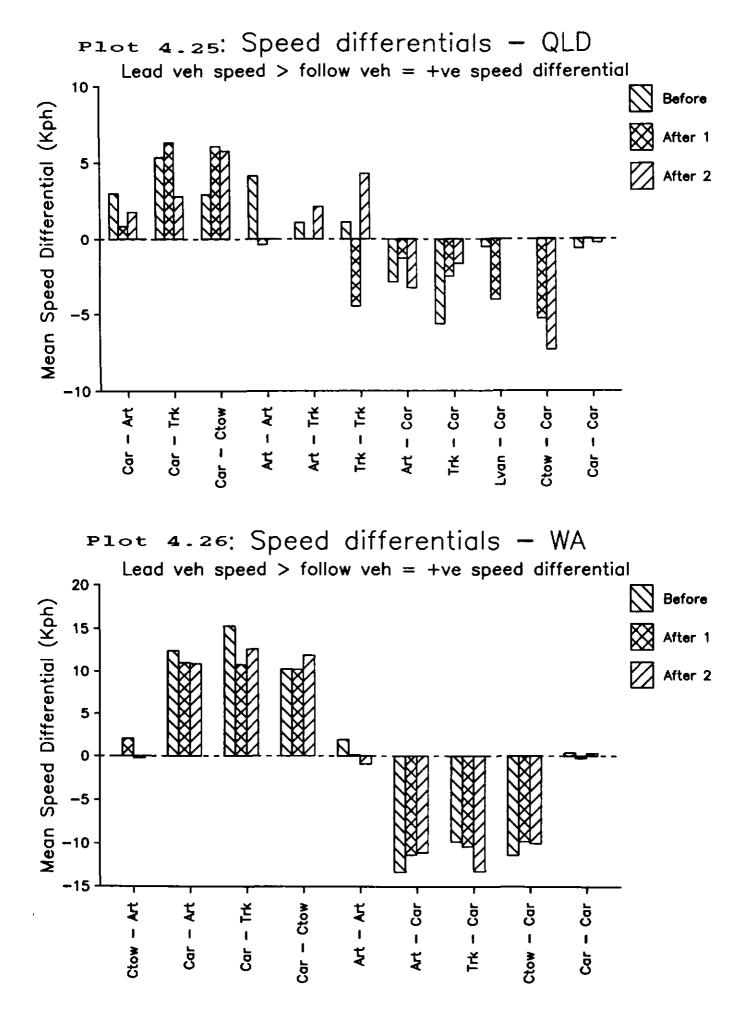
Notes: (1) All vehicle mixes have been aggregated. Thus the Car - Car mix swamps the results. (2) TAS was excluded as it failed to record satisfactory times for the free speed records.

41	age 1 - 8	afora			57	age 2 - 1	et After			¢+	age 3 - 2	nd After		
Mir	Nean Mean	Sdev	N	t of N	Hix	ilean	Sdev	N	t of M	Mix	Nean	Sdev	N	t of N
NSH			R					, n						4 VI N
Total	. •	14.3	1548			. 2	13.9	1450			.1	13.6	1292	
1	.1	14.4	453	29%	1	.1	14.4	423	293	1	.9	16.5	373	29%
34	6.9	12.2	188	12\$	28	.7	11.5	188	134	28	9	10.2	200	15%
7	-7.1	13.6	179	12%	34	4.3	13.4	165	113	34	5, 🛙	12.9	170	134
28	7	18.7	157	184	7	-3.3	13.6	160	11\$	7	-6.1	12.3	168	133
5	-6.5	13.4	180	6\$	32	4.8	11.6	83	63	32	4.6	11.9	53	43
32	6.9	13.3	85	5%	5	-4.7	13.6	73	5\$	5	-3.4	12.9	46	43
33	10.1	12.6	65	43	6	-11.5	11.0	47	34	33	8.3	12.9	44	3\$
6	-10.4	15.0	53	38	33	9.1	13.6	42	3\$	6	-9.8	13.3	43	38
49	-3.5	9.8	30	2\$	48	-2.5	10.0	28	21	27	6.8	12.5	29	2%
25	2.8	13.2	28	23	27	6.3	11.4	25	23	49	-5.9	12.3	23	23
VIC														
Total	.4	13.8	1201			.4	12.7	711			2	13.1	671	
28	.5	9.4	463	393	28	2	9.7	301	623	28	7	9.6	253	38%
34	13.6	11.8	158	134	34	12.1	11.2	81	11\$	7	-13.1	11.2	86	133
7	-14.8	12.5	148	123	7	-11.7	12.	64	93	34	12.4	11.0	77	11\$
1	.4	14.3	79	73	1	.4	15.0	57	83	1	.1	13.4	67	183
27	.1	11.5	61	51	27	6	9.6	32	51	27	.2	8.1	36	53
49	.7	11.4	53	43	49	.1	10,0	29	43	49	-2.7	9.4	23	31
33	10.3	13.4	33	38	6	-19.4	11.8	19	38	6	-10.8	13.1	18	34
6	-9.6	14.9	31	3\$	33	10.8	13.3	19	31 21	29 33	13.0	11.6	13 12	23 23
13 29	-5.6	16.4	19 17	2% 1%	2 46	-6.9	11.2	11 9	13	33 26	13.5 -5.∎	11.0 11.2	8	13
29	18.6	11.5	17	14	80	6	10.2	,	19	20	-3.0	11.2	•	14
QLD														
Total	1	14.0	789			. 3	13.5	995			3	13.0	1159	
1	7	15.1	321	418	1		14.2	548	55%	1	3	13.4	662	57%
33	5,4	11.8	78	183	33	6.3	11.7	87	93	7	-3.3	13.1	84	71
6	-5.6	13.5	73	98	6	-2.5	12.6	77	83	33	2.8	11.7	84	78
34	3.	12.4	68	98	7	-1.3	12.1	60	63	34	1.8	11.3	73	63
7	-2.9	13.4	65	51	34	. 8	12.3	53	51	6	-1.7	11.7	70	68
26	1.1	11.3	21	38	2	-5.3	13.6	23	23	2	-7.3	13.6	33	31
27	1.1	16.3	18	28	26	-6.5	18.5	20	24	29	5.7	14.6	26	28
29	2.9	11.0	18	28	29	6.1	9.6	20	24	49	-1.6	9.4	17	13
5	5	14.8	15	28	28	4	9.6	15	24	27	2.1	10.5	14	13
28	4.1	14.6	15	24	5	-4.1	12.4	13	14	26	4.3	12.9	11	14
WA Totol	•	18 E	1748			.1	18.2	1392			.3	15.6	2631	
Total	.1	15.5	1345			.1	15.3	1342			. ა	13.0	20-31	
1	.4	14.8	626	47\$	1	3	14.7	646 105	463	1	.3	14.8	1070	413
34	12.4	12.9	120	91	34	11.0	13.9	125	93	34 7	10.9 -11.1	13.0	268 241	1 8 3 93
7 28	-13.3 1.9	13.1	118 83	9 4 6 4	7 28	-11.3 .1	13.6 10.0	113 91	81 71	7 28	-11.1 9	12.7 18.2	241 193	94 78
28	-11.4	10.6 13.3	68 68	5% 5%	20 29	10.2	14.6	91 65	54	26	-10.0	14.5	137	53
29	-11.4	13.3	00 59	43	27	-9.8	13.7	63 61	43	29	-10.0	13.5	137	58
6	-9.8	12.7	38	34	33	10.8	11.5	44	34	6	-13.3	12.9	82	38
33	15.3	12.9	31	24	6	-10.4	11.0	30	23	33	12.6	16.6	63	23
32	6.4	14.1	21	24	39	2.1	16.9	19	13	13	4.0	16.9	41	23
5	-7.5	15.0	17	18	27	3.7	13.2	18	13	39	2	15.7	37	13
-														

Table 4.17Speed differential (kph) by vehicle mix STATE by STAGE by mix - Most frequent mixes, 2 imme roads ------

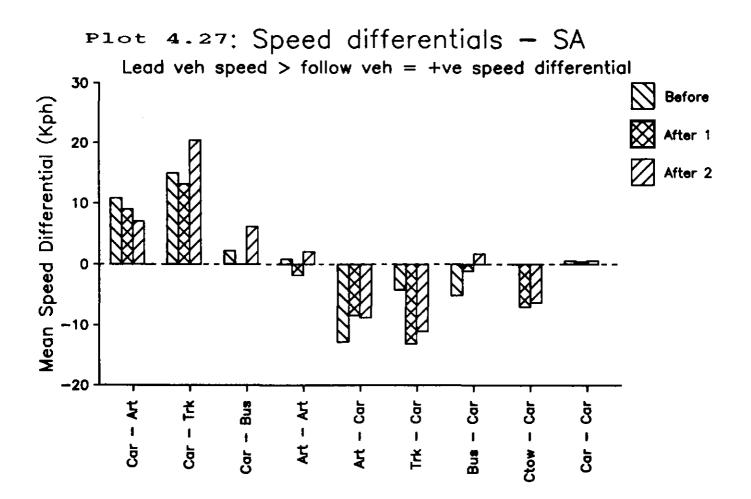

•

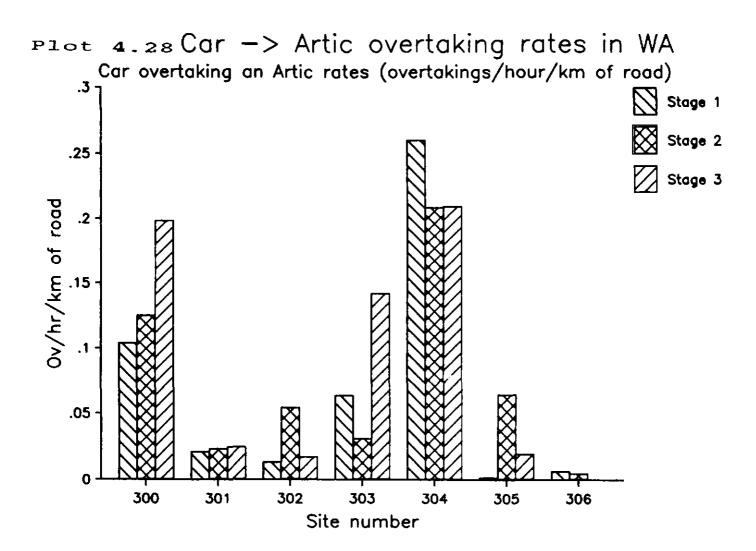

St	tage 1 - B	etore			St	age 2 - 1	st After			SI	age 3 - 2	nd After		
Hix	lieen	Sdev	N	% of N	8ix -	Nean	Sdev	N	% of N	Mix	Nean	Sdev	N	% of N
SA														
Total	.5	14.7	697			.1	16.2	500			1	16.0	735	
1	.6	14.2	458	66%	1	.4	15.9	391	498	1	.6	16.1	395	54%
34	10,8	16.	58	88	34	9.0	15.4	63	83	7	-8.8	13.7	48	71
7	-12.9	11.0	54	81	2	-7.0	17.9	55	71	2	-6.3	14.3	47	63
28	.8	9.1	42	68	7	-8.4	15.2	53	71	34	7.0	14.3	42	63
6	-4.2	12.7	18	38	28	-1.8	10.9	53	71	29	2.8	14.8	41	68
á.	-5.2	12.9	17	24	29	6.7	14.8	51	64	28	2.1	11.8	29	43
33	14.9	14.9	16	28	6	-13.2	10.3	25	34	4	1.7	13.1	15	23
31	2.2	10.4	11	23	33	13.1	14.6	20	38	6	-11.1	12.8	14	21
27	1.6	17.2	9	1\$	4	-1.1	12.2	10	13	31	6.1	15.8	14	24
49	2.1	10.6	8	1\$	8	-1.8	18.6	10	1\$	33	20.4	12.1	14	23
TAS														
Total	1.1	14.2	154			. 3	15.5	1096) time dat S in stag		d by	
26	1	13.9	69	328	1	1	15.3	682	62%	14	ið TU årdð	49		
49	1	16.3	47 39	25%	6	-8.3	13.6	65	64					
27	3.5	11.3	31	281	33	9.4	14.4	65	64					
28	2.1	13.8	27	18%	7	-6.5	14.2	59	5%					
45	6.8	24.4	4	34	34	7.4	12.7	57	54					
22	3.0	11.3	2	11	5	-2.7	18.7	25	23					
21	19.0		i	11	32	3,3	20.4	24	24					
46	-5.0	. 1	1	18	2	-5.6	12.6	21	21					
••		••	•		29	10.2	16.9	21	21					
					4	-9.9	14.5	10	14					
ACT														
Total	. 2	14.0	41 9			.3	15.6	321			4	14.8	452	
1	2	13.7	199	478	1	7	15.9	161	584	1	3	14.6	283	638
6	-9.0	12.3	34	81	33	11.8	12.4	26	81	33	9.9	13.1	29	6\$
7	-10.4	11.0	32	83	6	-9.7	11.7	22	71	6	-7.8	16.1	24	5%
34	11.9	12.7	32	83	7	-6.4	9,9	20	63	7	-12.4	13.6	19	43
33	8.1	11.9	30	72	34	10.8	16.8	12	4 3	34	5.8	12.9	19 .	- (1
26	2.8	6.6	13	31	32	2.4	14.5	9	38	5	.2	13.9	16	42
27	-6.3	9.3	11	3\$	5	-11.8	21.1	8	23	32	.2	13.1	14	3\$
28	-2.0	10.0	11	38	49	11.4	10.0	7	23	28	1.3	11.5	7	-2\$
32	4.9	15.2	7	24	2	-15.5	9.8	6	23	26	-5.7	10.6	6	1\$
2	-7.8	11.7	6	14	29	13.8	12.6	6	23	2	-16.2	15.8	5	1\$


Notes:

(1) Mixes vary in their sorted frequency order across stages within a state.

.


Vehicle type	Mean Free spe Before	eds (km/h) 1st after	2nd after
Car	102	100	99
Articulated	90	93	95
Speed dispersion (km/h)	12	7	4
Mix	Speed differe	entials (km/h)	
Car - Artic	9.7	7.6	8.1
Artic - Car	-10.4	-6.8	-8.9


Table 4.18 Speed differentials vs 'Speed dispersion' by Stage 2 lane roads only.

Notes:

(1) mean free speeds are taken from tables 3.21 - 3.23.

(2) speed differentials are taken from table 4.1.

		CARs					AR	TICULATED		
Overtake	lœ	nean	sdev	n	Oflow	loc	BOOD	vebe	n	Qflow
rate										
ov/hr/ka										
.19	1390	1 0 8	15.2	344	14.3	1369	99	14.6	161	6.7
.92	1391	106	16.4	134	5.6	1301	103	11.3	135	5.6
.01	1302	105	10.9	162	6.8	1302	92	12.7	34	1.4
.06	1393	166	11.3	500	29.9	1303	90	7.0	44	1.8
.26	1394	108	12.1	529	22.8	1304	95	7.7	265	8.6
.00	1305	103	17.1	178	1.7	1305	90	11.0	21	.6
.01	1306	1 0 7	14.8	41	7.4	1366	99	7.2	14	.9
.12	2300	110	13.6	334	14.0	2380	109	12.6	189	7.8
.02	2301	106	15.6	144	6.0	2301	104	18.6	128	5.3
.05	2302	108	13.6	176	7.3	2302	91	19.1	191	4.2
.03	2303	107	12.8	506	21.2	2303	95	9.9	26	1.1
.21	2364	107	12.3	596	24.8	2394	93	8.3	141	5.8
.06	2305	103	18.6	290	8.4	2365	71	32.8	43	1.8
.69	2305	109	15.9	64	2.6	2396	90	10.9	19	.8
.26	3360	109	12.3	416	16.9	3390	100	11.6	273	11.2
.02	3361	109	14.3	165	6.9	3 391	107	11.3	153	6.3
.02	3382	108	11.8	173	7.1	3302	97	7.9	51	2.1
.14	3303	107	11.1	676	27.5	3303	95	8.4	97	4.9
.21	3384	108	11.8	568	20.8	3394	94	9.0	170	7.0
.02	3395	108	12.9	184	7.7	3305	94	8.3	49	1.7

Table 4.19 Cars overtaking an Articulated Overtaking rates (ov/hr/km), 2 lane roads in Western Australia

Notes:

- (1) All articulated travelling at same mean speed
- (2) Flow rates <= 150 veh/hr
- (3) Based on a paper by R J Troutbeck, AIR 289-1 (ARRS), April 1981
- (4) Oflow: Traffic flow rate in vehicles per hour
- (5) Loc: site location number assigned by FORS

Table 4.20 Comparison of 1978 and 1983 Free Speed surveys, 2 lane roads only - FORS paper, Aug 1985

CARS				TRUCKS				
1978	Nean		85 th	1978	Nean		85 th	Car - truck
	Speed	Sdev	pctle		Speed	Sdev	pctle	speed diff
NSW	98	14.2	112	NSH	83	9.7	92	15
VIC	98	12.0	109	VIC	78	9.5	88	20
QLD	94	11.4	185	QLD	83	9.8	93	12
WA	93	13.1	102	HA	0	. 8	0	0
SA	96	12.3	108	SA	81	9.8	91	15
CARS				TRUCKS				
1983	itean		85 th	1983	Mean		85 th	Cer - truck
	Speed	Sdev	pctle		Speed	Sdev	pctle	speed diff
NSH	96	12.4	108	NSW	84	9.9	94	12
VIC	96	10.0	106	VIC	87	8.5	96	9
QLD	91	18.4	101	QLD	82	8.8	92	9
WA	102	12.5	114	HA	84	12.9	96	18
SA	97	11.2	108	SA	81	10.3	90	16
CARS				TRUCKS				
Oct 1986	Mean		85 th	Oct 1986	Hean		85 th	C a r - truck
	Speed	Sdev	pctle		Speed	Sdev	pctle	speed diff
NSW	182	12.5	114	NSH	94	11.4	196	7
VIC	191	12.8	114	VIC	86	9.5	96	15
OLD	92	13.1	106	QLD	84	11.1	96	8
HA	107	13.4	121	HA	97	11.8	109	10
SA	100	13.0	113	SA	85	10.7	96	14
CARS				TRUCKS				
Apr 1987	Mean		85 th	Apr 1987	Nean		85 th	Car - truck
	Speed	Sdev	pctie		Speed	Sdev	pctle	speed diff
NSH	101	12.2	114	NSW	96	10.2	107	5
VIC	103	11.2	115	VIC	89	8.3	97	14
QLD	91	11.8	103	QLD	88	9.2	97	4
HA	107	14.9	122	HA	95	14.6	111	12
SA	99	13.7	113	SA	86	10.7	97	13
CARS				TRUCKS				
Oct 1987	Mean		85 th	Oct 1987	Mean		85 th	C ar - tru ck
	Speed	Sdev	pctle		Speed	Sdev	pctle	speed diff
NSH	183	12.9	116	NSW	98	19.2	198	5
VIC	103	10.6	114	VIC	90	7.8	98	13
QLD	90	11.0	102	QLD	87	9.8	97	4
HA	108	11.9	120	HA	98	11.4	110	10
SA	100	13.9	114	SA	98	10.1	101	9

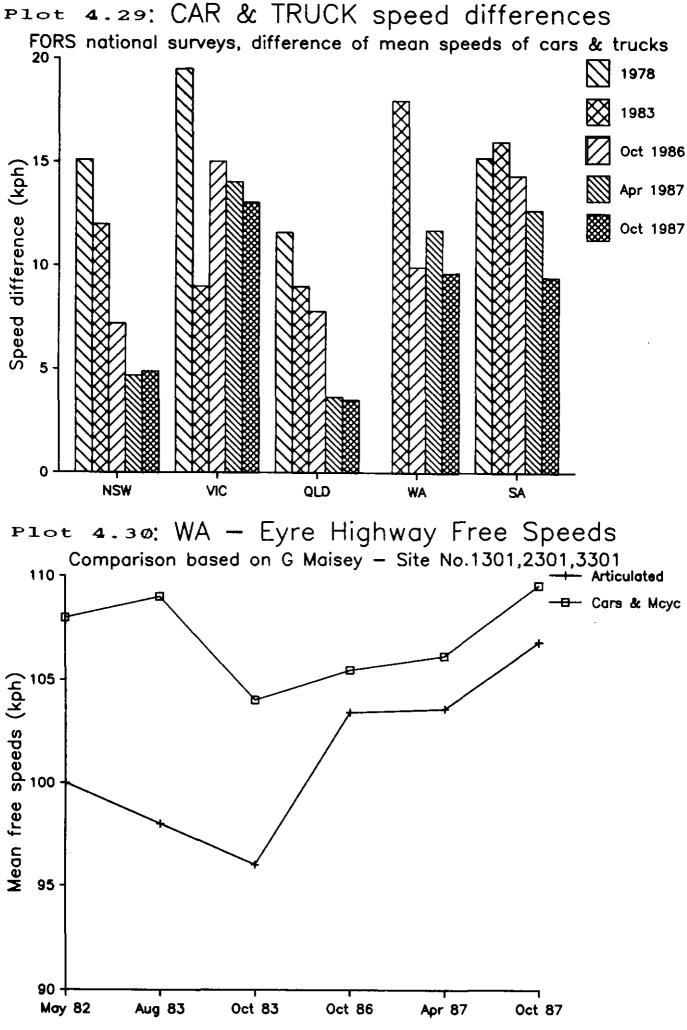
Notes:

 (1) This table is based on the Federal Office of Road Safety's August 1985 paper title "Heavy vehicle speed limits" page 31.
 (2) Trucks are not defined in the paper and are assumed to be both rigid trucks and articulated vehicles.

Table 4.21 Eyre Highway Free Speed comparisons.

Western Australia, based on G Maisey, 1983 - sites 1301/2301/3301

ARTICULATED trucks - 24hr surveillance


Survey	Year	Month	Speed limit	Sample size	Mean (kph)	Sdev	85 % pctle.	\$≰) 940 køh	180 kph
Before	1982	May	80	81	100	15.4	116	88	44
After 1	1983	Aug	90	85	98	10.6	109	73	46
After 2	1983	0ct	9 0	92	96	14.4	111	67	28
Before	1986	Oct	90	135	103	11.3	115	88	66
After 1	1987	Apr	100	128	104	10.6	115	87	65
After 2	1987	0ct	100	152	107	11.4	119	91	75

CARS & MOTORCYCLES - 24hr surveillance **

Survey	Year	Month	Speed limit	Sample size	Mean (kph)	Sdev	85 % pctle.	*t.) 940 kph	t) 100 kph
Before	1982	May	110	141	108	13.5	122	90	72
After 1	1983	Aug	110	71	109	12.5	122	92	77
After 2	1983	Oct	110	176	104	12.5	117	81	59
Before	1986	Oct	110	141	105	16.3	122	83	65
After 1	1987	Apr	110	150	106	15.6	122	85	64
After 2	1987	Oct	110	171	189	14.6	125	89	72

Notes:

**1) Table drawn from "Effect of increasing the Speed limit and associated penalties for Heavy vehicles on the Eyre Highway", Maisey, G E, Police Dept, Perth WA. Res Report 83/1

	ci	RS	1P	TICULTED	RIGID		
				ucks	trucks		
Year	Sample	Mean	N Moan		N	Mean	
	stations	(kph)		(kph)		(kph)	
1967		91.0					
1968		91.4					
1969		91.7			490	70.7	
1970		93.1			380	71.0	
1971	64	95.5	273	72.0	335	72.6	
1972	66	97.6	327	71.9	350	69.8	
1973	66	98.0	303	73.2	426	75.1	
1974	66	96.9	298	78.0	407	75.5	
1975	66	97.1	362	79.7	385	75.7	
1976	66	98.7	309	82.1	369	79.5	
1977	66	99.1	320	83.7	337	80.3	
1978	66	100.2	325	82.3	760	80.3	
1979	66	98.9	421	80.6	749	78.7	
198	66	97.9	396	85.3	611	78.8	
1981	66	100.4	379	85.1	641	84.0	
1982	66	101.1	552	89.4	605	86.0	
1983	66	100.2	534	89.4	740	85.7	
1984		100.9	420	88.3	739	86.5	
1985		102.2	539	89.4	778	85.6	
**1986	- •	192	681	87	227	87	
**1987		103	670	90	244	86	
**1987		104	661	94	249	87	

Table 4.22: South Australian Free Speed Survey Comparisons NAASRA surveys, 1967-1985

Notes:

- 1) ** FORS Truck speed study results for South Australia See tables 3.11 - 3.13
- SA definition "others" interpreted as Rigid trucks
 SA definition "Semis" interpreted as Articulated trucks

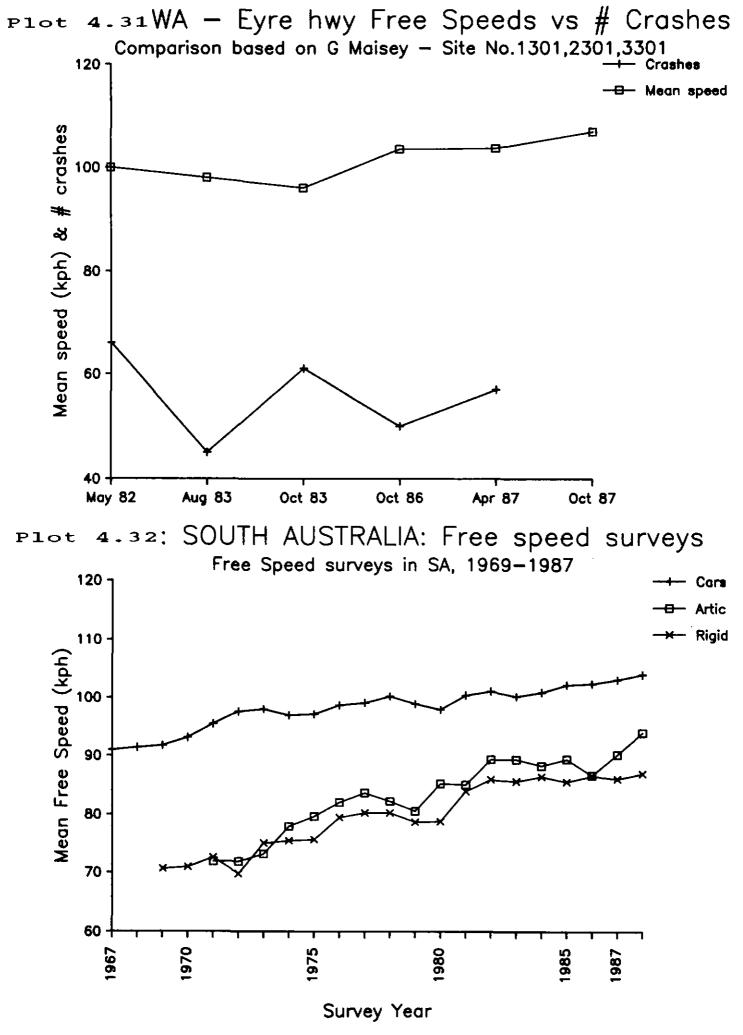

	on Rural	Roads, 1	985	····	
	Ие	an Free s	peeds		
1985	N	Mean (kph)	Sdev	85 th pctl e	
Cars Semis Others	539	102 89 86	10.3		
Oct 1986**					
Cars Semis Others		102 87 87	11.1		
April 1987*	*				
Cars Se mis Oth ers		103 90 86	10.4	101	
Oct 1987**					
Cars Semis Others		1 04 94 87		-	

Table 4.23: South Australia: NAASRA Free speeds

Notes:

۰.

1) ** - FORS Truck speed study results for South Australia See tables 3.11 - 3.13 2) SA definition "others" interpreted as Rigid trucks 3) SA definition "Semis" interpreted as Articulated trucks

V.1. Crash statistics - Western Australia & Victoria.

The study by Solomon (Solomon 1964) was a landmark in research on the relationship between crashes and speed differential between cars and trucks especially on two lane roads. Solomon showed that as the speed differential increases, so the number of overtakings and with this the crash rates and severity climb.

The ROSTA study of HCV (ROSTA 1978) concluded that on primary rural roads crash occurrence potential could be reduced if truck and car speeds are brought together. Loong et al. support this argument (Loong et al. 1985, 6):

" If truck speeds are increased to reduce speed differentials, the benefits derived from the reduction of crash occurrence rates would outweigh the disbenefits caused by increased severity".

Croft (Croft 1985) concludes that the literature points to an association between speed and speed differential and crash occurrence and severity.

The Eyre Highway study by Maisey examined the relationship between increasing the truck speed limit (thus reducing the car/ truck speed differential) and crashes. Maisey concluded (Maisey 1983, 7):

"The limited data showed no substantial increase in the number of semitrailers or other motor vehicles involved in reported accidents in the 1983 period compared with previous years."

Plot 4.31 contains an extension to Maisey's original results with the addition of the present study Eyre highway results. This plot provides six points in time for the free speed surveys along with the corresponding truck involved crash statistics.

The correspondence between the longitudinal speed data for the Eyre highway (plot 4.31) and the time series of crashes in rural Western Australia (plot 5.1 & 5.2) suggests the following:

1. There is no obvious or dramatic correlation between the Eyre highway data and either crashes or fatalities. This conclusion is based on a careful visual examination of plots 5.1 & 5.2.

2. Neither change in speed limits (Feb 83 or Jan 87) has induced any perceptible change in the crash or fatalities time series.

The work by Fieldwick on the relationship between rural speed limit and crash rates (Fieldwick 1981) indicated:

"that the change in crash rate is an almost linear function of speed limit". 19

He cites the results of many international studies where speed limits were

¹⁹ Fieldwick 1981, pg 16.

reduced during the mid 1970's during the oil embargoes. His work raises the negative aspect of increasing truck speed limits.

Similarly, the paper by Frith & Derby (Frith & Derby 1986) which dealt with the deregulation of the freight industry² in New Zealand in 1983 suggested that:

"on State highways truck fatal crashes have experienced an increase with respect to other fatal crashes since deregulation with a one year lag followed by a stabilization which has not occurred for all crashes."²¹

The literature suggests:

A. reducing speed differentials will reduce overtaking maneuvers and this would reduce the number of crashes

B. as truck speeds increase, so would the occurrence and severity of crashes increase for collisions involving trucks.

The results of the present study favour point (A) above. Certainly the Eyre highway evidence strongly suggests that the increased truck speed limits have had no perceptible deleterious effects on crashes or fatalities. However, the Eyre highway is not representative of rural highways in Australia.

V.1.a. Descriptive time series analysis

Each of the participating States in this study was asked to provide crash and fatality data. This data was to overlap with the free speed surveys to ascertain whether there was any adverse effect of increasing the truck speed limits.

Appendix F outlines the data requested from each of the States. The only States that could provide the information requested in time for inclusion in the report were WA and VIC. The data requested consisted of a dump of each States crash statistics database for all crashes since July 1981 for crashes which involved at least one truck. A minimum set of variables were requested and the format of the data transfer specified.

V.1.b. Western Australia

Plots 5.1 & 5.2 present the raw crash and fatality statistics for ALL crashes in Western Australia involving a truck (see Appendix F for definitions) aggregated by month for the time period July 1981 through June 1987. As such, the WA crash data overlapped two of the three free survey points in the present study. The crashes are split into Urban vs Rural.

²¹ Frith & Derby 1986, pg 114, para 29.

²⁰ The deregulation affected the number of trucks, not the speed limits.

Rural crashes (plot 5.1) have remained stationary²² hovering around a monthly mean of 50.5 crashes (Table 5.1). A Cusum analysis ²³ (plot 5.5) indicates significant changes away from the mean during the periods:

Large increases March - May 1982 * Sept - Dec 1982 July - August 1983 * Sept - Dec 1983 * Dec 1984 * March - June 1987 Large decreases * Jan - Mar 1983 * Jan - Mar 1984 * Aug - Oct 1985 Dec 1985 - Feb 1986 * Nov 1986 - Mar 1987

The legislative changes took place in February 1983 and January 1987. Both

²² The term 'Stationary' has a specific statistical meaning when used in time series analysis. A time series is said to be strictly stationary if:

- * all the y: have the same marginal distribution, this being normal.
- * all the y₁ have the same mean.
- * constant variance
- * covariance $(y_t, y_{t+1}) = covariance (y_{t+1}, y_{t+1+1})$

The term here is not being used in the strict statistical sense, only to indicate the constancy of the mean.

²³ Cusum analysis is a plot of the cumulative sum of deviations of a time series from the mean (or arbitrary reference level 'k') level of the time series. Frith & Derby (Frith & Derby 1986, 109, para 18,19) used this analysis in their paper on freight deregulation in New Zealand.

A Cusum is calculated as follows:

 $S(x,n) = Sum_{1,n} (x_1 - k)$

where:

S(x,n)	the cumulative sum of a time series 'x' (crashes) for terms
	t: 1, 2n.
Χt	the time series values from t: 1,2n .
n	the time series runs from t:1,2N where n: 1 <= n <= N.
k	an arbitrary reference level which the time series moves
	about. If the mean is used, then the last Cusum value-
	S(x,N) will be zero by definition.

The values of S(x,n) are plotted on the Y axis and the values of n are plotted on the X axis.

The Cusum curve will be horizontal when the mean remains equal to k. It will slope up when the mean > k and down when the mean < k.

Approximate 95% significance levels can be applied to any change of S(x,n) of greater than 2 standard deviations.

months coincide with negative slopes in the Cusum which indicates that the monthly number of crashes was declining below the mean monthly level.

The picture for rural fatalities is similar to crashes. Rural fatalities are stationary about the mean level of 1.0 per month (Table 5.1). The Cusum analysis on rural fatalities (plot 5.6) indicates large and significant movements above this mean level in Sept - Dec 1983, Jan 1983 and July 1986. Downward movements were slower and spread out over six to twelve months.

In summary, for Western Australia:

1. Monthly crash and fatality numbers have remained stationary about the mean level over the entire time series.

2. There is no evidence to indicate (from the Cusum plots) any massive leaps in crash or fatality numbers as a result of legislative changes in either February 1983 or January 1987.

V.1.c. Victoria

Plots 5.3 & 5.4 present the crash and fatality trends for fatal crashes in Victoria involving a truck (see Appendix F for definitions) aggregated by month for the time period July 1981 through December 1986. The crashes are split into Urban vs Rural and overlap only one free speed survey point.

The trend series for rural crashes (plot 5.3) indicates that the number of crashes began to decline from June 1984. Prior to this the number of crashes was stationary about a mean level of 14 per month (Table 5.1). The picture for fatalities is similar (plot 5.4).

The Cusum analysis of rural fatal crashes (plot 5.7) indicates substantial movements above the mean level in the periods Aug - Dec 1981, Sept - Dec 1983 and March - Sept 1984. Downward movements below the mean were less dramatic.

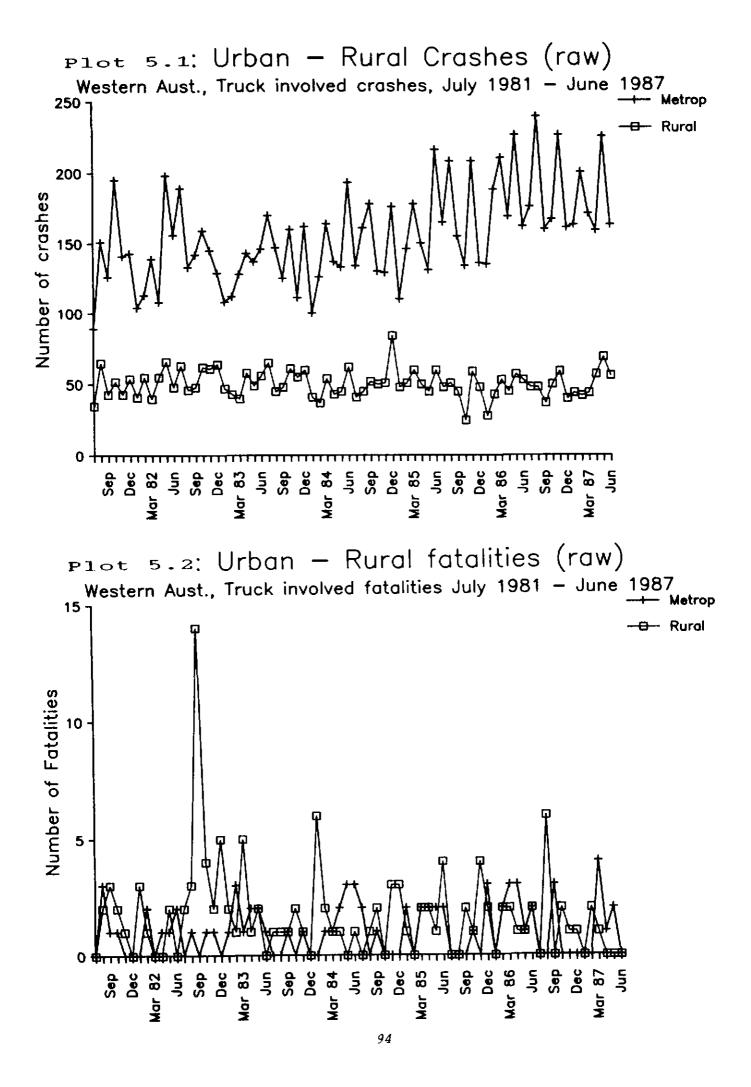
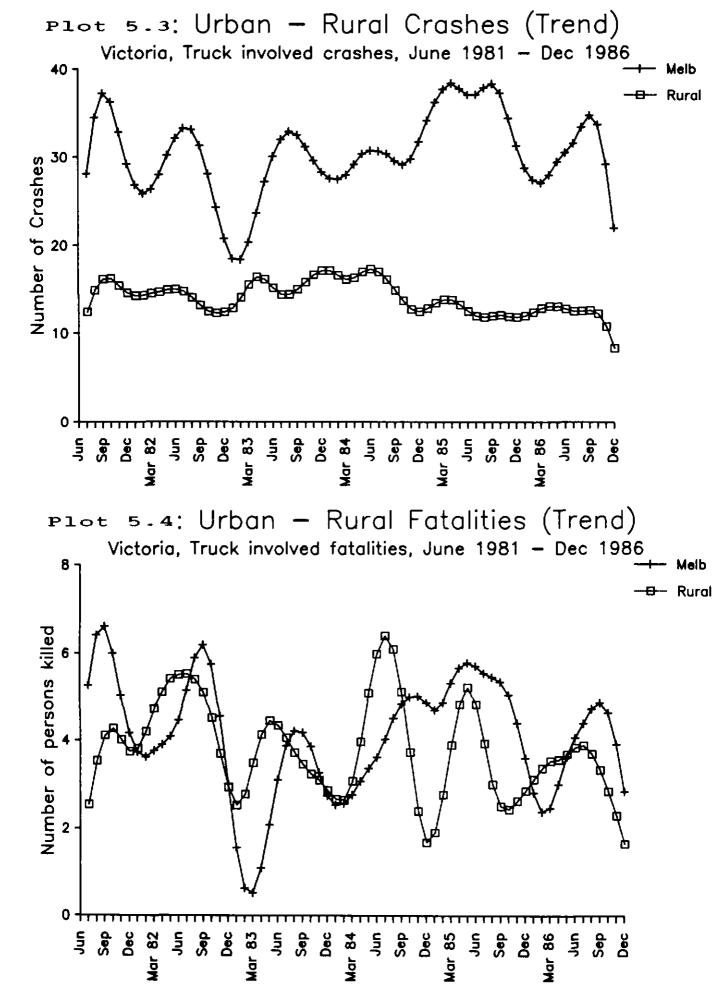
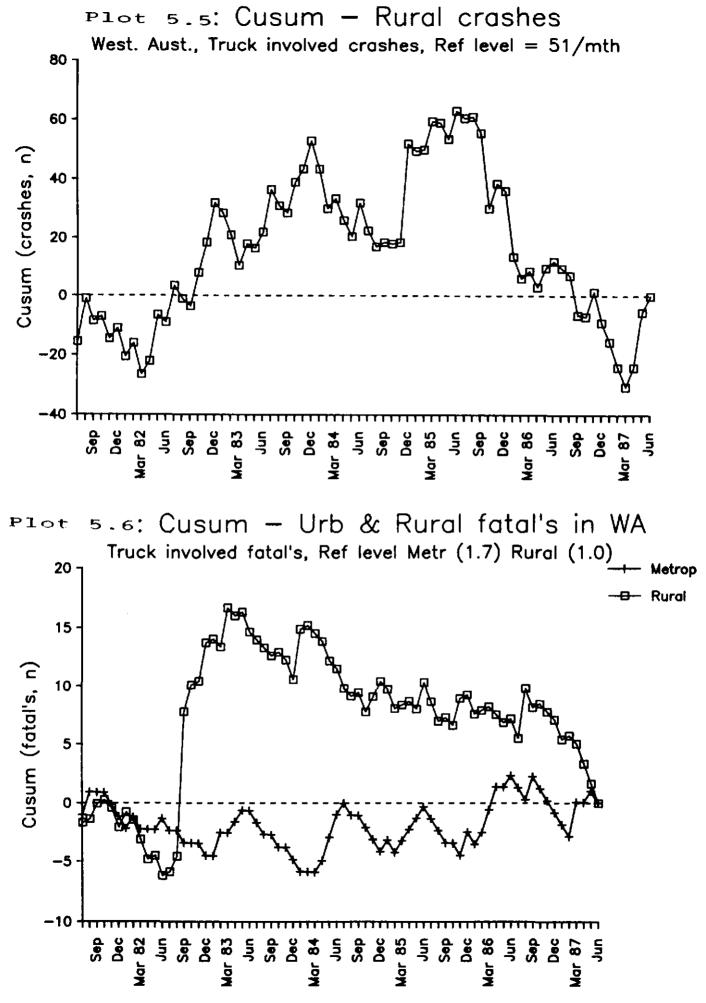
Large and significant movements above the mean level of rural fatalities are indicated by plot 5.8 in Feb - Oct 1982, Mar - Oct 1984 and Feb - Sept 1985. Significant decreases occurred between Oct 1982 - March 1983 and Oct 1984 - Feb 1985. There seems to be a cyclic process present in the increases and decreases in rural fatalities.

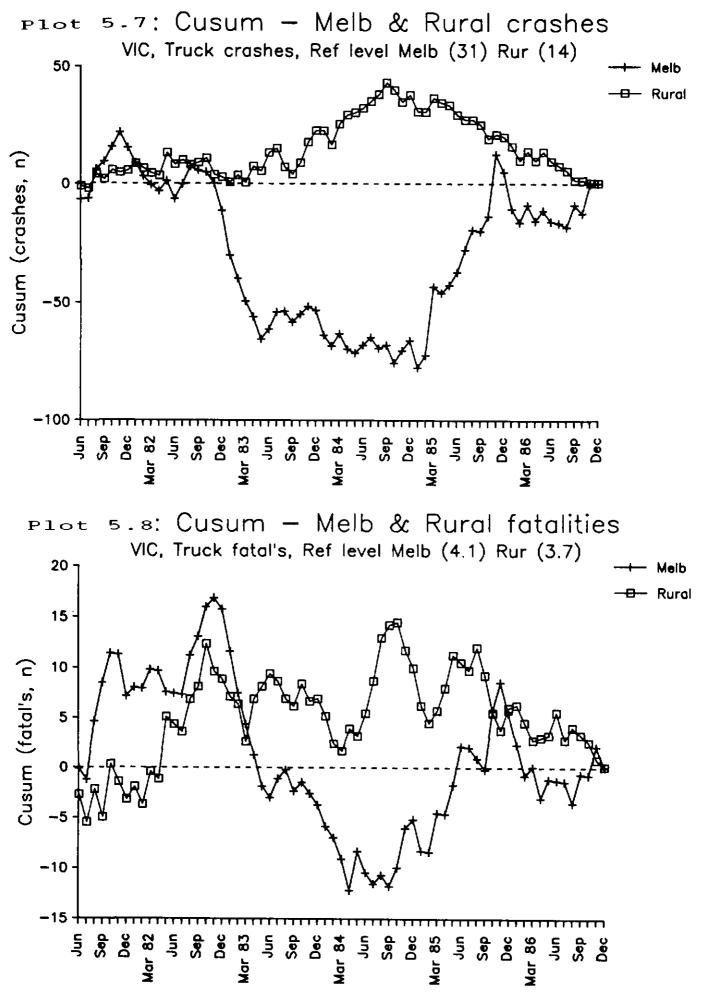
In summary, for Victoria:

1. Monthly crash and fatality numbers have remained stationary about the mean level until June 1984 from whence they have declined.

2. Further time series analysis may reinforce the initial observation of a cyclic trend in rural fatalities.

In conclusion, there does not seem to be any significant change in truck related crashes or fatalities coincident with legislative changes to truck speed limits in Western Australia. For Victoria, the downward trend of crashes and fatalities is of interest.


Table 5.1. Mean number of crashes and fatalities which involved trucks in the States of Western Australia and Victoria. July 1981 - June 1987. Western Australia: July 1981 - June 1987 Mean Sdev (per mth) Fatalities Rural 1.0 Urban 1.7 1.1 2.1 Crashes Rural50.59.7Urban155.733.2 Victoria: July 1981 - Dec 1986 Mean Sdev (per mth) Fatalities Rural 3.7 Urban 4.1 2.4 2.5 Crashes Rural 14.1 Urban 30.7 4.1 8.3

Notes:

 (1) Crashes in Victoria are only fatal crashes which involved a truck. In Western Australia, all crashes are reported involving trucks.
 (2) The means are based on monthly values.

The major conclusions drawn from the analysis of the free speed data are collated below.

- 1. Statistical assumptions (IV.1.a.)²⁴:
 - 1.1. The vast bulk of the free speed distributions were found to be non-normal. Thus the error distributions were found to be nonnormal.
 - 1.2. All the speed distributions were found to contain significant levels of auto correlation. Thus the error terms were not independent.
 - 1.3. In the bulk of cases the error variance across factor levels was found to be non homogeneous.
 - 1.4. Thus we concluded that the ANOVA model was not appropriate for testing the free speed data. We relied instead on non parametric procedures for testing the hypotheses on free speed.
- 2. Aggregated free speeds all roads (IV.2.a.):
 - 2.1. Articulated vehicle mean free speeds increased in four States as did the percentage travelling faster than 90 km/h.
 - 2.2. Car mean free speeds remained stable with some slight increases in VIC and WA.
 - 2.3. The control State QLD which did not increase its truck speed limits experienced the same increases in articulated vehicle mean free speeds as other States.
 - 2.4. The control State Queensland seems to be confounded. By contrast, the vehicle group 'cars' does appear to have acted as a control.
- 3. Aggregated speeds for two-lane roads (IV.2.b.):
 - 3.1. Articulated vehicle mean free speeds increased in all States except Tasmania as did the percentage travelling greater than 90 km/h and 100 km/h.
 - 3.2. Car mean free speeds remained fairly stable across the three stages with a slight increase in Western Australia and slight decreases in Tasmania and ACT.
 - 3.3. The control State Queensland, which did not increase its truck speed limits experienced the same increase in articulated vehicle mean free speeds as other States. Thus the control seems to be confounded by some other variable.
 - 3.4. Thus in summary the comparison between the all-roads and the twolanes at the gross mean and percentage levels are not starkly

¹⁴ (III.1.a) refers to the section of the report from which this summary has been drawn.

different.

- 4. Platooning on 2 lane roads (IV.2.c.):
 - **4.1.** The number of car led platoons has increased by 63% across ALL speed categories between October of 1986 and October 1987. This increase straddles the legislative change in January 1987.

The constituents of these platoons are unknown.

- **4.2.** During the same period there was a 31% decrease in articulated le d platoons across ALL speed categories.
- 5. Time of day (IV.2.e.);
 - 5.1. Articulated vehicles have the roads to themselves at night and this period also corresponds to the highest mean free speeds for articulated vehicles. Thus the low volume of traffic and possible reduced police enforcement levels at night may give rise to these elevated truck speeds.
 - 5.2. Prior to the legislative change the mean free speeds of articulated vehicles did not overlap the mean free speeds of cars. The speed window was 0 km/h.

This speed window has now widened considerably to 14 km/h and may go part way in explaining why there has been such an increase in car led platooning.

- 5.3. An examination of the sampling percentages by vehicle type strongly suggests that either the actual distributions of vehicle types in the States are radically different or that the samples in each State are biased towards different vehicle types. None of the State distributions resemble the all over Australian distribution of "Registered motor vehicles" published by the ABS (see Table 3.2). (Section III.1.b.)
- 5.4. The survey design is such that statistically we cannot say with any confidence that the sample is representative of the Australian vehicle population. Clearly, trucks have been over sampled, but to what extent is unknown. The effects of time of day and the number of active sampling sessions have contributed substantially to this bias. (Section III.1.b.)
- 5.5. It would appear that either the WA sampling distributions are not "typical" of the expected distribution of vehicle types by time of day or that time of day has seriously confounded the sampling used in this study. Further, as Maisey has noted, truck speeds tend to be higher during the night time than the daytime hours.

Thus it appears that not only have trucks been over sampled due to the elevated number of sampling sessions during the night (plot 3.1), but that this could also have biased the mean truck speeds reported in this study upwards. (Section IV.2.f.)

- 6. Speed differentials (IV.3):
 - 6.1. By either measure of speed differential 'speed dispersion' has been reduced over the study period. The question still remains as

to whether the legislative change had any bearing on this result.

- 6.2. The four most frequent vehicle mixes are (in order) Car Car, Artic - Artic, Car - Artic and Artic - Car.
- 6.3. Cars are still travelling faster than articulated vehicles but only by 8 km/h by stage 3 of the study. This value has dropped by 2 km/h since the before study in October 1986.
- 7. Comparison to previous studies (IV.4.):
 - 7.1. The present study indicates a stasis in the speeds of cars and articulated vehicles at one location on the Eyre highway which contrasts with the results obtained by Maisey where he found that speeds decreased.
 - 7.2. The most important issue that emerges from the FORS paper and which was one of the driving forces behind the present study is to reduce speed dispersion (based on the difference between the mean speeds). This was to be achieved by increasing the speed limit for HCV.
 - 7.3. The important point which emerges from plot 4.32 is that the results of the present study seem to be consistent with the apparent trends which have emerged from the South Australian time series.
- 8. Crash statistics (V.1.):
 - 8.1. In conclusion, there does not seem to be any significant change in truck related crashes or fatalities coincident with legislative changes to truck speed limits in Western Australia. For Victoria, the downward trend of crashes and fatalities bodes well for the legislative changes which lie beyond the VIC time series.
- 9. Overtaking Rates (IV.2.g):
 - 9.1. Further exploration of the utility of overtaking rates as a predictive indicator of the relative crash risk of a road would require a longitudinal examination of the change in the overtaking rates for the period of the present study (October 1986 to October 1987) with site specific numbers of crashes or fatalities.

If such a relationship could be shown then changes in overtaking rates may be a more refined indicator of overall road safety than the concept of speed dispersion.

9.2. Further work really needs to be done and overtaking rates promise to be a very attractive indicator of general road safety.

Discussion:

The literature places emphasis on reducing 'speed dispersion' by increasing truck speed limits. In other studies which have examined this issue no safety disbenefits have been discovered.

This study and others in the literature have shown that trucks already exceed legal speed limits. Truck drivers are travelling at speeds they consider safe in respect of their vehicle, the traffic volume, road environment and police activity.

This study has shown that the free speeds could not be analyzed using standard normal distribution based parametric statistics. Nonparametric statistics were used instead.

The sampling methods used in this study are biased towards over sampling of trucks and elevating truck mean speeds. Scant attention has been given to sample design in most of the previous studies cited. All future studies of vehicle speeds must incorporate a rigorous and enforceable sampling strategy. Also, basic population data on vehicle counts by site by time of day and date needs to be gathered as the basis of better sampling design.

Articulated vehicle mean free speeds have increased in four States as has the percentage travelling faster than 90 km/h. The control State for the study, Queensland failed in its purpose as it experienced the same changes in mean free speeds as did other States. Thus there are further, unknown factors confounding articulated vehicle speeds.

Car speeds did act as a stabilising control for articulated vehicle speeds. Car speeds remained stable during the study period.

There has been a large increase in the number of platoons led by cars over the study period. This result is matched by a modest decline in the number of articulated led platoons.

Articulated vehicle speeds are closer to car speeds than ever before and so articulated vehicles may be joining the queues of other vehicles on our roads. The evidence for this is the widening of the speed window for cars and articulated vehicles from \emptyset to 14 km/h.

Speed differentials have reduced slightly from 10 km/h to 8 km/h for the Artic/ car vehicle mixes. Thus on this score alone a successful decrease in 'speed dispersion' has been accomplished.

The results of the present study are consistent with the three benchmark studies considered in this report. Thus no abberations were discovered which may cast doubt on the study's results.

There are no obvious or significant changes to road crashes and fatalities in the two States examined which could be attributed to the change in truck speed limits.

The question regarding whether radar biases free speeds downward could not be resolved by this study as the results are equivocal. Better research design is indicated to hammer this problem out.

Automatic classifiers are on the whole too immature for use as reliable speed survey instruments. Time and technology will improve the situation no doubt.

Overtaking rates are potentially a much better indicator of road and traffic safety than either aggregated speeds or speed differentials. Further research on this indicator should be funded and encouraged.

Date: 28 December, 1987 By: R W Fitzgerald & Associates

<u>Ackroyd, L W & Bettison, M</u> (Jan 1974), Vehicle speeds on the M1 in Nottinghamshire, 1969-73. Traffic Engineering & Control, 15(8), pp.440-441.

<u>Ackroyd, L W & Bettison, M</u> (May 1979), Vehicle speeds on the M1 motorway in Nottinghamshire - 1974-78. Traffic Engineering & Control, Vol. 20, No. 5, pp.254-255, IRRD Publication 79P08853. London, United Kingdom.

<u>Ackroyd, L W & Bettison, M</u> (Dec 1970), Traffic speed behaviour at a rural motorway location. Traffic Engineering & Control, 12(8), pp. 421-423.

<u>Almond, J</u> (1963), Speed measurements at rural census points. Traffic Eng. Control, 5(5), p.290.

<u>Armour, M</u> (1982), Vehicle speeds on residential streets. Proc. 11th ARRB Conf. 11(4), pp. 190-205.

<u>Armour, H</u> (Sept 1984), The effect of police presence on urban driving speeds. Australian Road Research 14(3), pp. 142-148.

<u>Bishop, M M</u> (1978), Heavy commercial vehicle speed and operational safety study: mechanical inspection task report. Road Safety and Traffic Authority. Victoria.

<u>Boughton, C</u> (Undated), Licensing of heavy vehicle operators. CTL 85/0347 S. Office of Road Safety, Australia.

<u>Brackett, R W & Edwards, M L</u> (1977), Comparative evaluation of speed control strategies. Texas Transp. Inst. Rep. No. TSS 77-6300-30A.

<u>Brackett, R W & Beecher, G P</u> (1980), Longitudinal evaluation of speed control strategies. Texas Transp. Inst. Rep. No. TSS 80-60-020-D-1-AA.

Callaghan, W M (1979), Survey of rural speeds in Australia. Working Document No. 9, Office of Road Safety. Commonwealth Department of Transport. Callaghan, W M (Mar 1978), Survey of rural speeds in Australia. Federal Office of Road Safety Working Document 4. Cameron, M H & Sanderson, J T (1982), Review of police operations for traffic law enforcement. Royal Automobile Club of Victoria, Report TS 82/5. <u>Castle, G H</u> (1976), The 55 mph speed limit: A cost/benefit analysis. Traffic Engineering, Vol. 46, No. 1. Chipman, M L (1982), The role of exposure, experience and demerit point levels in the risk of collision. Accident Analysis and Prevention Vol. 14, No. 6, pp. 475-483. Council, F M (1970), A study of the immediate effects of enforcement on vehicular speeds. Highway Safety Research Center. University of North Carolina. <u>Cowley, J E</u> (September), The 1979/80 ACRUPTC survey of vehicle free speeds in capital cities of Australia. Department of Transport Australia, CR24. Melbourne. Cowley, J E (Dec 1978), Heavy commercial vehicle speed and operational safety study. Accident analysis task report. CTL 79/1180 H. Road Safety and Traffic Authority, Victoria. Cowley, JE (Jun 1983), Car-truck speeds and traffic safety in Victoria. Road Traffic Authority 7/83 (GR). Victoria. <u>Cowley, JE</u> (Jan 1980), A review of rural speed limits in Australia. CR 20. J C Cowley and CTL 81/0211 L. Office of Road Safety, Department of Associates. Transport, Australia. <u>Cowley, J E</u> (1977), Effectiveness of the 100 km/h absolute speed limit in Victoria. Report to Road Safety & Traffic Authority, Victoria under contract to the Office of Road Safety. J E Cowley and Associates. <u>Croft, P G</u> (Sept 1985), Review of the speed limit differential for heavy vehicles. Research note,

Report No. RN 7/85. IRRD publication 86P07202 (ISSN; 0314-9846). Traffic Authority of New South Wales. Traffic Accident Research Unit, Rothschild Avenue, Rosebery, 2018 New South Wales.

<u>Croft, P G</u> (1972), Speed limits for general traffic and heavy vehicles. Internal Report. Traffic Accident Research Unit. New South Wales.

<u>Cumming, R W & Croft P G</u> (1973), A review of speed control in relation to road safety. Federal Department of Transport report NR/16 for Expert Group on Road Safety.

Daniel, W.W. (1978), Applied Nonparametric statistics. Houghton Mifflin Co., Boston USA.

Department of Motor Transport (1983), Heavy vehicle inspection results for the year ended 30th June, 1983. CTL 84/0520 H. DMT, Sydney, N.S.W.

<u>Farthing, D W</u> (Jan 1977), Some factors affecting rural speed/flow relations. A study of rural speed/flow relations where a high proportion of heavy vehicles occurs on steep gradients. IRRD 77P07228 (ISSN: 0041-0683). Traff Eng Control, London, England.

Federal Office of Road Safety (Aug 1985), Heavy vehicle speed limits. Federal Department of Transport.

Federal Department of Transport (Apr 1984), Rural freeway speed survey. Federal Department of Transport.

Fieldwick, R (Jan 1981),

The relationship between rural speed limit and accident rate. NITRR Tech Rep (S Afr) No. RF/1/81. IRRD publication 82P02289. CTL 81/0345 H. National Institute for Transport and Road Research, CSIR, PO Box 395, 0001 Pretoria, South Africa.

<u>Fieldwick, R & Fernie, B E</u> (Nov, 1980), The 70 km/h rural speed limit and accidents. Technical Report No. RF/4/80. IRRD publication 84P10592. National Institute for Transport and Road Research (CSIR), PO Box 395 001 Pretoria, South Africa.

Fieldwick, R & Brafman Bahar, G (Jul 1983),

Design speed, speed limit and costs on rural freeways. Report No. S316, Annual Transportation Convention held at Melner Park Showground Johannesburg, Vol. 1. IRRD publication 86P03514 (ISBN: 0-7988-2949-4). Council for Scientific and Industrial Research, 0001 Pretoria, South Africa. <u>Firth, W J & Derby, N M</u> (1986), Road safety effects of deregulation of heavy freight transport in New Zealand. 13th ARRB/5th REAAA, Vol. 13, part 9, Safety.

<u>Frith, W J</u> (1984), Truck accidents in New Zealand. Proc. Transportation and Traffic Engineering Group, IPENZ Conf. 10, pp. 77-94.

<u>Fry, T A et al</u> (Undated), Heavy commercial vehicle speed and operational safety study - summary and recommendations. RoSTA. Victoria.

<u>Greer, W</u> (Jun 1982), The use of Benkelman beam deflection readings in evaluation of extremely heavy vehicle moves. Proc. International Symposium on Bearing Capacity of Roads and Airfields. IRRD publication 83P03393 (ISBN: 82-519-0480-3). Tapir, Gloeshaugen N-17034 Trondheim-Nth, Norway.

<u>Hampson, C</u> (1984), Contributing factors in road crashes. Department of Transport, Office of Road Safety, WD76. Canberra.

Hand, N E & Hills, P M (1967), Determination of the effect of various police activities on the observance of speed limits by drivers. Great Britain Home Office Police Scientific Development Branch, Rep. 19/67.

Hauer, E & Ahlin, F J (1982), Speed enforcement and speed choice. Accident Analysis and Prevention Vol. 14, No. 4, pp. 267-278.

Hauer, E (1971), Accidents, overtaking and speed control. Accident Analysis and Prevention, Vol. 3, No. 1.

<u>Heath, A N & Good, M C</u> (Dec 1985), Heavy vehicle design parameters and dynamic pavement loading. Australian Road Research Vol. 15, No. 4, pp. 249-263. IRRD publication 86P01827 (ISSN: 0005-0164). Vermont, South Victoria, Australia.

<u>Homel, R</u> (1980), Penalties and the drink-driver: a study of 1,000 offenders: the deterrent effects of penalties on drink/drivers. N.S.W. Bureau of Crime Statistics and Research. Sydney.

House of Representatives Standing Committee on Road Safety (Apr 1977), Heavy vehicle safety. CTL 78/1185 H. House of Representatives Standing Committee on Road Safety, Parliament, Australia. <u>Institute of Transportation Engineers</u> (1977a), Implications of the mandatory 55 mph national speed limit. ITE Metropolitan Section of New York and New Jersey Subcommittee on 55 mph speed limit. Traffic Engineering, Vol. 47, No. 2.

<u>Johnson, H D</u> (1970), Road accident and casualty rates in 1968. Road Research Laboratory (M.O.T.). Crowthorne, England.

<u>Johnston, I R & Fraser, P J</u> (1983), Do 'visible' vehicle detectors really influence driver behaviour? Australian Road Research, Vol. 13, No. 3.

<u>Joksh, Hans C</u> (1984), The relation between motor vehicle accident deaths and economic activity. Accident Analysis and Prevention 16(3), pp.207-210.

<u>Joscelyn, K B & Bryan, T H</u> (1971), A study of the effects of law enforcement on traffic flow behaviour. NHTSA FH 11 7476.

<u>Kimball, C E & Bronstad, M E</u> (1981), Heavy-Vehicle tests of tubular thrie-beam retrofit bridge railing. Transp. Res. Rec. No. 796, pp. 9-14. IRRD publication 82P01817 (ISSN: 0361-1981, ISBN: 0-309-03210-5). Washington.

Leong, H J W (1968), The distribution and trend of free speeds on two-lane two-way rural highways in New South Wales. Proc.4th ARRB Conference, 4(1), pp. 791-808. Australian Road Research Board.

Loong, K Y & Budd, R A (Jun 1985), Truck and bus speed limits on rural roads. Federal Office of Road Safety Working Document 83. CTL 86/0151 H. Federal Office of Road Safety, Canberra, ACT.

Lyneham, S (1983), Traffic law observance study. 8th Australian Transport Research Forum. Forum Papers, 2, 313-343. Canberra.

<u>MacDonald, Wendy A</u> (Oct 1985), Human factors & road crashes - A review of their relationship. Federal Office of Road Safety, Federal Department of Transport, CR39.

<u>MacKay, J G</u> (Dec 1978), Heavy Commercial vehicle speed and operational safety study. Vehicle braking task report. Bellamy - MacKay Associates. CTL 80/0021 H.

Maisey, G E & Saunders, C M (Feb 1981),

An evaluation of the 1980/81 Christmas / New Year traffic enforcement blitz. CTL 81/0015 E. Road Traffic Authority, Perth, Western Australia. <u>Maisey, G E</u> (Dec 1983), Effect of increasing the speed limit and associated penalties for heavy vehicles on the Eyre Highway. Research Report No. 83/1. IRRD publication 84P02998. CTL 84/0327 H. Police Department. Research and Statistics Section, 22 Nount Street, Perth 6000, Western Australia. Maisey, G E (1986), The effect of increasing the speed limit for trucks on remote highways. Western Australia Police Dept. Research Report, IRRD publication 86RØ8573. Western Australia Police Department, 22 Mount Street, Perth 6000, Western Australia. Marconi, W (1977), Speed control measures in residential areas. Traffic Eng. 47, pp. 28-30. <u>McLean, JR</u> (1978), Observed speed distributions and rural road traffic operations. ARRB Proceedings, Ninth Conf. Vol. 9, Part 5. Australian Road Research Board. Messiter, G F (1971), Speed limits for heavy vehicles. Traffic Accident Research Unit, Internal Report. New South Wales. <u>Miller, A J</u> (1968), Studies of speeds and delays on rural roads in Australia. Ninth Int. Study Week in Traffic and Safety Engineering. Munich. Ministry of Transport (Wellington, New Zealand), Open road speed limits. Report to the Parliamentary Select Committee on Road Safety. National Highway Safety Bureau (1969), Maximum safe speed for motor vehicles. Federal Highway Administration. Washington. National Highway Safety Bureau (1978), Maximum safe speed for motor vehicles. Federal Highway Administration. Washington. Neter, J & Wasserman, W (1974), Applied linear statistical models. R D Irwin Inc, Ill, USA. <u>Nilsson, G & Johnson, P</u> (1982), The effects of speed limits on traffic accidents and fuel consumption. Proc. of the International Symposium, Dublin October 6-8 1981, IRRD publication 84P04744. A N Foras Forbartha, St Martins House 4 Dublin,

Ireland.

<u>Nixon, P J</u> (Nov 1978), Passenger motor vehicle safety, heavy vehicle safety and motorcycle and bicycle safety. Statement to Parliament, the House of Representatives Standing Committee on Road Safety. CTL 78/1861 H. Department of Transport, Australia.

<u>Nordstrom, O & Nordmark, S</u> (1981), Handling characteristics of heavy vehicle combinations at constant speed: final report. National Swedish Road and Traffic Research Institute. CTL 81/0312 L. Linkoping, Sweden: VTI.

<u>Norrish, J</u> (1985), Comparison of Vehicle Speed Measuring Equipment. Paper # F733 from the Traffic Authority of NSW.

Office of Road Safety (1985), Heavy vehicle speed limits; the case for removing the speed limit differential. CTL 86/0095 H. Office of Road Safety, Canberra.

Office of Road Safety (Aug 1985), Heavy vehicle speed limits. IRRD publication 86P02999. Office of Road Safety, P O Box 594, Civic Square 2608 ACT, Australia.

Office of Road Safety (1979), Survey of rural speeds in Australia. Office of Road Safety, Working Document No. 4.

Ove Arup Transportation Planning (Sept 1984), Analysis of fatal truck crashes in 1981. North Sydney.

<u>Pearson, RA</u> (Dec 1978), Heavy commercial vehicle speed and operational safety study: General requirements task report. Country Roads Board Report. IRRD publication 80P02820. CTL 80/0020 H. Road Safety and Traffic Authority, 801 Glenferrie Road, Hawthorn, 3122, Victoria.

<u>Polus, A & Craus, J</u> (Mar 1981), Downgrade speed characteristics of heavy vehicles. Vol. 107, No. 2, pp. 143-52. IRRD publication 81P09789 (ISSN: 0569-7891). J Transp. Eng. Asce, New York, USA.

<u>Quayle, G M L</u> (Feb 1983), Rural freeway speed limits. CTL 83/0115 L. ORS, Canberra.

<u>Radwan, A E & Sinha, K C</u> (Apr 1978), Effect of the national speed limit on the severity of heavy - truck accidents. CTL 80/0212 H. Reinfurt, D W & Levine, D N (1973),

Radar as a speed deterrent: An evaluation. Highway Safety Research Center. University of North Carolina.

<u>Road Safety and Traffic Authority of Victoria</u> (Sept 1978), Heavy commercial vehicle speed and operational safety study. Summary and recommendations. CTL 79/1178 H. Road Safety and Traffic Authority of Victoria.

<u>Road Safety and Traffic Authority of Victoria</u> (Sept 1978), Heavy commercial vehicle speed and operational safety study. Summary and recommendations. CTL 79/1013 H. Road Safety and Traffic Authority of Victoria.

<u>Road Safety and Traffic Authority</u> (Dec 1978), Heavy commercial vehicle speed and operational safety study: Accident analysis task report. Report. IRRD publication 80P00909. Road Safety and Traffic Authority, 801 Glenferrie Road, Hawthorn, 3122, Victoria.

<u>Road Safety and Traffic Authority</u> (Dec 1978), Heavy commercial vehicle speed and operational safety study: Comprehensive final report. Report. IRRD publication 80P00913. Road Safety and Traffic Authority, 801 Glenferrie Road, Hawthorn, 3122, Victoria.

<u>Salter, R J</u> (Aug/Sept 1974), The effect of the 50 mile/hr limit on speeds and headways at the northern end of the M1 motorway. Traffic Engineering & Control, 15(16/17), pp. 772-773.

Samuels, S E (Nov 1985), The effects of gross vehicle mass variations on heavy vehicle noise emission. Proceedings - Motor Vehicle and Traffic Noise. IRRD publication 86P01810 (ISSN: 0156-6687, ISBN: 0-909882-08-8). Australian Acoustical Society, 35 Clarence Street Sydney 2000 New South Wales, Australia.

<u>Samuels, S</u> (National Association of Australian State Road Authorities, 2 Dind Street, Milsons Point, 2061 New South Wales), Review of road vehicle limits for vehicles using Australian Roads. Technical supplement Vol. 9, The effect of gross vehicle mass variations on heavy vehicle noise emission. IRRD publication 87P01228 (ISBN: 0-85588-194-1).

<u>Sanderson, J T & Cameron, M H</u> (1982), Speed control. Royal Automobile Club of Victoria. Melbourne.

<u>Sanford, D L</u> (Apr 1978), Developments in heavy vehicle braking systems. Seminar on Developments in Truck and Bus Design. IRRD publication 78P00623. Society of Automotive Engineers-Australasia, 191 Royal Parade, Parkville, 3052 Victoria, Australia.

<u>Slavik, M M & Martin, P K</u> (1983), Computerized observations on road traffic. Report, IRRD Publication 84P00677. National Institute for Transport and Road Research, CSIR, P O Box 395 0001 Pretoria, South Africa.

<u>Solomon, D</u> (1964), Accidents on main rural highways related to speed, driver and vehicle. Bureau of Public Roads. US Department of Commerce, Washington.

<u>Spitz, P E</u> (May 1984), Speed versus speed limits in Californian cities. Journal of Institution of Traffic Engineers.

<u>Storie, V J</u> (Undated), Involvement of goods vehicles and public service vehicles in motorway accidents. TRRL Lab. Report 1113. Crowthorne, UK.

<u>Strotton, C & Schnerring, F</u> (Feb 1983), The Mount Ousley in-depth study of heavy vehicle crashes August 1979 to September 1980. TARU, CTL 83/0103 L. Traffic Authority of New South Wales, Rosebery, N.S.W.

<u>Sweatman, P</u> (Aug 1981), Report on Italian truck impact meetings: OECD heavy freight vehicles group and NARDO experiment. Australian Road Research Board. CTL 81/0159 L. ARRB, Vermont South, Victoria.

<u>Sweatman, P</u> (1979),

The dynamic loading performance of heavy vehicle suspensions. Ninth Australian Road Research Board Conf, Vol. 9 No. 5, pp. 262-269. IRRD publication 79P07874 (ISSN: 0572-1431). Australian Road Research Board, 500 Burwood Highway Vermont South 3133 Victoria.

Sweatman, PS (Dec 1980),

Effect of heavy vehicle suspensions on dynamic road loading. Research Report Arr No. 116. IRRD publication 81P12873 (ISSN: 0518-0728, ISBN: 0-86910-003-3). Australian Road Research Board, 500 Burwood Highway Vermont South Victoria 3133.

Tanner, J C & Johnson, H D (1962), Sample survey of the roads and traffic of Great Britain. Road Research Technical Paper No. 62 H.M.S.O.. London.

Thompson, J E & Fry, A T (25-29 Aug 1980),

Najor findings of a study of heavy vehicle speed and operational safety in Victoria. Tenth Australian Road Research Board Conference, Sydney University, Vol. 10, No. 4, pp. 128-140, IRRD publication 84P09310 (ISSN: Ø572-1431). Australian Road Research Board, 500 Burwood Highway Vermont South 3133, Victoria.

Thompson, T W (1978), Heavy commercial vehicle speed and operational safety study: Vehicle speeds task report. Presented to Road Safety & Traffic Augmority, Victoria. Wilbur Smith & Associates Pty Ltd in association with P.A. Consulting Services Pty Ltd.

<u>Troutbeck, R J</u> (1981), Overtaking rates on low volume roads. ARRB internal report, AIR 280-1, April 1981.

<u>Vaughan, R J</u> (1970), Speed and accidents on rural roads. Australian Road Research, Vol. 4, No. 3.

<u>Waslelewski, P</u> (1982), Speed as a measure of driver risk: observed speeds versus driver and vehicle characteristics. General Motors Research Laboratories, GMR-4108. Warren, Michigan.

<u>Weldon, E</u> (Dec 1973), A note on differences between urban-rural and speed-limit categorisations of road accident data. Accid Anal Prev Vol. 5, No. 4, pp. 367-70. IRRD publication 74P05770. Pergamon Press, Oxford, England.

<u>Wells, L</u> (Feb 1987), Analysis of Truck Speed data obtained from automatic classification counters - draft. ATAC/FORS Truck Study, RTA. Internal unpublished report.

<u>Wilbur Smith and Associates</u> (Dec 1978), Heavy commercial vehicle speed and operational safety study. Comprehensive final report. CTL 79/1181 H.

<u>Wilbur Smith and Associates</u> (Dec 1978), Heavy commercial vehicle speed and operational safety study. Vehicle speeds task report. CTL 79/1179 H.

<u>Wood, H T</u> (Dec 1978), Heavy commercial vehicle speed and operational safety study. Driver related factors task report. CTL 80/0022 H. Road Safety and Traffic Authority of Victoria.

<u>Zaremba, L A and Ginsburg, M J</u> (Undated), The 55 mph limit and front to rear collisions involving autos and large trucks. Accident Analysis and Prevention, Vol. 9.

VIII. APPENDICES

APPENDIX A - Site descriptions

LOCH			DATE	CTADT	
LUCN	ROAD NAME	UAY	DATE	SIARI	FINISH
1987 1					
1001	NEW ENGLAND HIGHNAY	SATURDAT	25-10-86	9200	4000
1002	HUTE RIGHNAT	MUNDAY	2/-10-80	1388	1500
1002	HUTE HIGHWAY	HUNDAY	2/-10-66	1030	1230
1893	NEWCASTLE EX	SATURDAY	01-11-86	1045	1245
1003	NENCASTLE EXPRESSNAY	SATURDAY	91-11-86	1330	1530
1094	HUME HIGHNAY	MONDAY	03-11-86	1809	2288
1005	HUME HIGHWAY	TUESDAY	04-11-86	1415	1815
1006	NEWELL HIGHWAY	FRIDAY	07-11-86	1830	2230
1067	NEWELL HIGHWAY	SATURDAY	88-11-86	0100	8588
1008	F5-SOUTH WESTERN FREEWAY	TUESDAY	11-11-86	1930	9999
1009	F5-SOUTH WESTERN FREEWAY	WEDNESDAY	12-11-86	0000	8438
1010	HUME HIGHWAY	SATURDAY	15-11-86	1930	2400
1011	HUME HIGHNAY	TUESDAY	25-11-86	2400	8415
1012	NEW ENGLAND HIGHWAY	TUESDAY	18-11-86	1030	1430
1110	HUME HIGHWAY	TUESDAY	14-10-86	1800	2301
1110	NEW ENGLAND HIGHWAY HUME HIGHWAY HUME HIGHWAY NEWCASTLE EX NEWCASTLE EXPRESSIVAY HUME HIGHWAY HUME HIGHWAY NEWELL HIGHWAY NEWELL HIGHWAY F5-SOUTH WESTERN FREEWAY HUME HIGHWAY HUME HIGHWAY	THURSDAY	16-10-86	2400	6468
1110	HUME HIGHNAY	TUESDAY	18-11-86	1820	2388
1110	HUME HIGHWAY	THURSDAY	20-11-86	2400	04.00
1110	HUME HIGHNAY	SATURDAY	22-11-86	8688	1000
1120	HESTERN HIGHNAY	TUESDAY	14-10-86	2400	04.00
1120	WESTERN HIGHNAY	THURSDAY	16-10-86	0600	1998
4400	LECTEDN LITCULLY	ALTINDALV.	15 11 0/	6/00	1000
1129	WESTERN HIGHWAY WESTERN HIGHWAY WESTERN HIGHWAY PRINCES HIGHWAY EAST PRINCES HIGHWAY EAST PRINCES HIGHWAY EAST PRINCES HIGHWAY EAST PRINCES HIGHWAY EAST PRINCES HIGHWAY WEST	TUESDAY	18-11-86	24 98	9498
1120	WESTERN HIGHWAY	THURSDAY	20-11-86	8688	1000
1130	PRINCES HIGHWAY EAST	TUESDAY	14-10-86	9689	1999
. I 🕈	PRINCES HIGHNAY EAST	THURSDAY	16-10-86	1800	2299
1130	PRINCES HIGHWAY EAST	SATURDAY	15-11-86	24 90	84.00
1130	PRINCES HIGHWAY EAST	TUESDAY	18-11-86	8689	1998
1138	PRINCES HIGHMAY EAST	THURSDAY	28-11-86	1888	2288
1140	PRINCES HIGHNAY WEST	TUESDAY	21-11-86	1889	2299
1140	PRINCES HIGHWAY WEST	SATURDAY	25-10-86	2488	8488
1140	PRINCES HIGHNAY WEST	SATURDAY	01-11-86	24.98	8498
1140	PRINCES HIGHWAY WEST	THESDAY	25-11-86	1888	2210
1150	WESTERN HIGHWAY	TUESDAY	21-10-86	1888	2298
1150	WESTERN HIGHWAY	THURSDAY	38-18-86	24.88	64.68
1150	HESTERN HIGHNAY	FRIDAY	14-11-86	2498	84.99
1150	MESTERN HIGHMAY MESTERN HIGHMAY MESTERN HIGHMAY	THURSDAY FRIDAY SATURDAY	15-11-86	86.89	1888
	HESTERN HIGHNAY	TUESDAY	25-11-86		2290
	HESTERN HIGHNAY	THURSDAY	27-11-86		6460
	HUME HIGHWAY	SATURDAY	88 -11-86		8590
	HUME HIGHNAY	SATURDAY	68-11-86		1000
	HUME HIGHNAY	HEDNESDAY	12-11-86		6406
	HUME HIGHWAY	THURSDAY	13-11-86		2200
	HUME HIGHWAY	SATURDAY	29-11-86		1000
	HUME HIGHWAY		82-12-86		64.00
	HELBA HIGHNAY	SATURDAY	25-10-86		8480
	MELBA HIGHNAY	TUESDAY	11-11-86		1000
	MELBA HIGHNAY	THURSDAY	13-11-86		2299
	-	TUESDAY	25-11-86		1000
	MELBA HIGHNAY	THURSDAY	27-11-86		2299
	BENALLA-TOCUPHAL ROAD	SATURDAY	86-11-86		6400
1 -	BENALLA-TOCUMINAL ROAD	TUESDAY	11-11-86		2200
	BENALLA-TOCUPHIAL ROAD	SATURDAY	29-11-86		64.00
	BENALLA-TOCUMHAL ROAD	TUESDAY	92-12-86		2200
1100		IULJUAT	4 7-17 400	1040	

82±1	≭≈ ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ ≈≈≈≈≈≈≈≈≈≈		,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		************************
	ROAD NAME	DAY	DATE		
	\$*************************************				
77.30	SOUTH GIPPSLAND HIGHNAY	SATURDAY	22-11-86	1880	2200
1190	SOUTH GIPPSLAND HIGHWAY	TUESDAY	25-11-86	9699	1000
1190	SOUTH GIPPSLAND HIGHWAY	THURSDAY	27-11-86	2400	0400
1205	PACIFIC HIGHWAY	SATURDAY	06-12-8 6	0745	1145
1210	SOUTH GIPPSLAND HIGHMAY SOUTH GIPPSLAND HIGHMAY PACIFIC HIGHMAY PACIFIC HIGHMAY PACIFIC HIGHMAY PACIFIC HIGHMAY	TUESDAY	09 -12 -8 6	0100	0500
1215	PACIFIC HIGHWAY	HEDNESDAY	03-12-86	1200	16 00
1220	PACIFIC HIGHWAY	SATURDAY	86-12-86	2400	94 97
1225	NT LINDSAY HIGHWAY	MONDAY TUESDAY FRIDAY	8 8-12 -8 6	1930	2330
1230	BRUCE HIGHNAY	TUESDAY	28-1 0- 86	18 00	2200
1235	BRUCE HIGHNAY	FRIDAY	31-10-86	8845	8445
1240	PACIFIC HIGHWAY PACIFIC HIGHWAY MT LINDSAY HIGHWAY BRUCE HIGHWAY BRUCE HIGHWAY BRUCE HIGHWAY	SATURDAY	01-11-86	1800	2200
1245	BRUCE HIGHWAY BRUCE HIGHWAY BRUCE HIGHWAY GREAT EASTERN HIGHWAY EYRE HIGHWAY HASSELL HIGHWAY	TUESDAY	04-11-86	1115	1515
1250	BRUCE HIGHNAY	HEDNESDAY	85-11-86	1100	1500
1389	GREAT EASTERN HIGHWAY	MONDAY/TUESDAY	13 -18-86	1388	1380
1301	EYRE HIGHWAY	WEDNESDAY/THURSDAY	15~10-86	1000	1902
1382	HASSELL HIGHWAY	THURSDAY/FRIDAY	16-18-86	1600	1600
1303	HASSELL HIGHWAY ALBANY HIGHWAY BRAND HIGHWAY	SATURDAY/SUNDAY	18-1 0-8 6	1230	1230
1394	BRAND HIGHWAY	TUESDAY/WEDNESDAY	21-10-86	0955	0 955
1305	GREAT NORTHER HIGHWAY	SUNDAY/HONDAY	26-10-86	1400	1488
1306	BRAND HIGHWAY GREAT NORTHER HIGHWAY NORTH WEST COASTAL STURT HIGHWAY PORTH WAKEFTELD ROAD	FRIDAY/SATURDAY	24-10-86	1100	1100
1400	STURT HIGHWAY	THURSDAY	16-1 9-86	8208	9696
1401	PORTH WAKEFIELD ROAD	I MANUMA I	10 10 00	1000	
1402	PORTH WAKEFIELD ROAD	SATURDAY	18-10-86	0200	\$688
1483	SOUTH EAST HIGHWAY		18-10-86	1900	2300
1484	SOUTH EAST HIGHWAY	TUESDAY	28 -19-8 6		
: 5	STURT HIGHWAY	TUESDAY	28-1 9-86		
1486	SOUTH EAST HIGHNAY	THURSDAY	38-19-86	1200	1600
1407	STURT HIGHNAY	SATURDAY	01-11-86	8888	1290
1498	SOUTH EAST HIGHMAY SOUTH EAST HIGHMAY STURT HIGHMAY STURT HIGHMAY PORT MAKEFIELD	TUESDAY	64-11-86		
1501	MIDLANDS HIGHWAY	TUESDAY	28-10-86	14 98	1800
1501	MIDLANDS HIGHWAY	SATURDAY THURSDAY	\$ 1-11-86		
1503	BASS HIGHNAY	THURSDAY	23-1 0-8 6	1225	
1583	BASS HIGHWAY	TUESDAY	28-10-86		
1583	BASS HIGHWAY	THURSDAY TUESDAY	66-11-86		1490
1601	MAJURA RD	TUESDAY	28-1 8-86		
1691	MAJURA ROAD	TUESDAY	11-11-86		
1601	MAJURA ROAD	THURSDAY	13-12-86		
1682	BARTON HIGHWAY	THURSDAY	3 8-89-8 6		
1682	PURT HAREFIELD MIDLANDS HIGHHAY MIDLANDS HIGHHAY BASS HIGHHAY BASS HIGHHAY BASS HIGHHAY MAJURA RD MAJURA ROAD MAJURA ROAD BARTON HIGHHAY BARTON HIGHHAY	SATURDAY	\$1-11-86		
1682	BARTON HIGHNAY	TUESDAY	28-1 9-8 6	181	2210

NUMBER OF RECORDS is 94

115030-10-86BEALFORT VICHESTERN HIGHNAY2LANE UNDIVIDE115014-11-86BEALFORT VICHESTERN HIGHNAY2LANE UNDIVIDE115015-11-86BEALFORT VICHESTERN HIGHNAY2LANE UNDIVIDE115025-11-86BEALFORT VICHESTERN HIGHNAY2LANE UNDIVIDE115027-11-86BEALFORT VICHESTERN HIGHNAY2LANE UNDIVIDE115027-11-86BEALFORT VICHESTERN HIGHNAY2LANE UNDIVIDE116088-11-86BALMATTUH VICHUME HIGHNAY2LANE UNDIVIDE116012-11-86BALMATTUH VICHUME HIGHNAY2LANE UNDIVIDE1160117011-186BALMATTUH VICHUME HIGHNAY2LANE UNDIVIDE117012-11-86GLENBURN VICHUME HIGHNAY2LANE UNDIVIDE117013-11-86GLENBURN VICHELBA HIGHNAY2LANE UNDIVIDE117013-11-86GLENBURN VICHELBA HIGHNAY<	LOCN DATE LOCAT		ROAD NAME	ROAD TYPE
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114025-11-86LARA VICPRINCESFREENAYFREENAY114025-11-86LARA VICPRINCESFREENAYFREENAY114025-11-86LARA VICPRINCESFREENAYFREENAY115021-10-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115027-11-86BALMATTUN VICWESTERNHIGHMAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116013-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116027-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116013-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116027-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116013-11-86BALMATUN VICHUNE <t< td=""><td>1001 25-10-86 TANK</td><td>Drth NSW</td><td>NEW ENGLAND HIGHNAY</td><td>HIGHNAY</td></t<>	1001 25-10-86 TANK	Drth NSW	NEW ENGLAND HIGHNAY	HIGHNAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114025-11-86LARA VICPRINCESFREENAYFREENAY114025-11-86LARA VICPRINCESFREENAYFREENAY114025-11-86LARA VICPRINCESFREENAYFREENAY115021-10-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHMAY2LANE UNDIVID115027-11-86BALMATTUN VICWESTERNHIGHMAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116013-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116027-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116013-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116027-11-86BALMATTUN VICHUNEHIGHMAY2LANE UNDIVID116013-11-86BALMATUN VICHUNE <t< td=""><td>1002 27-10-86 BERRI</td><td>IMA NSW</td><td>HUME HIGHNAY</td><td>HIGHNAY</td></t<>	1002 27-10-86 BERRI	IMA NSW	HUME HIGHNAY	HIGHNAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1982 27-10-86 8ERRI	(MA NSH	HUME HIGHWAY	HIGHLAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1003 01-11-86 MT H	ITE NSW	NEHCASTLE EX	FREEWAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1003 01-11-86 MT W	ITTE NSH	NEWCASTLE EXPRESSIVAY	FREEWAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1004 03-11-86 GUNDA	AGAT NSW	HUME HIGHWAY	HIGHNAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1005 04-11-86 GUNDA	AGAT NSH	HUMF HIGHWAY	HIGHNAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1886 87-11-86 EORBE			HICHNAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1007 08-11-86 FORRE			HICHNAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1000 00 11 00 1000		FS_SMITH UFSTERN FREFUAY	FREFLIAV
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1000 11 11 00 HENRY	NCLE NOW	ES_SOUTH DESTERN ERFELAY	FOFFLIAV
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1010 15-11-96 REPRI	NA NCI		
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1010 13-11-00 DENI	LEIN INGNI		
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1011 23-11-00 GUULD			HIGHNAT HIGHNAT
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1012 10-11-00 DINGL	LETUR ROW	NEW ENGLARD FIGHNAT	TILUTINAT CONTRACT
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1110 14-10-00 NILTU			FREEMAT
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1110 10-10-30 KILMO			FREEMAT
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1110 18-11-86 KILMO			PREEWAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1110 20-11-86 KILMO			TREEHAY
114021-11-86LARA VICPRINCESPRINCESFREENAY114025-10-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESPRINCESFREENAY114001-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESFIGHAY HESTFREENAY114025-11-86LARA VICPRINCESHIGHAY HESTFREENAY115021-10-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICHESTERN HIGHAY2LANE UNDIVID115025-11-86BALMORT VICHESTERN HIGHAY2LANE UNDIVID115027-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATUH VIC	1110 22-11-86 KILMO		NUTE HIGHNAY	THEEMAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1120 14-10-86 BALLA	W VIC	WESTERN RIGHNAY	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1120 16-10-86 BALLA	IN VIC	HESTERN HIGHWAY	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1120 15-11-86 BALLA	N VIC	WESTERN HIGHWAY	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1128 18-11-86 BALLA	N VIC	WESTERN HIGHNAY	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1128 28-11-86 BALLA	N VIC	HESTERN HIGHNAY	FREEHAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1130 14-10-86 HEARN	ES DAK VIC	PRINCES HIGHWAY EAST	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	0 16-10-86 HEARN	NES OAK VIC	PRINCES HIGHWAY EAST	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1130 15-11-86 HEARN	ES OAK VIC	PRINCES HIGHWAY EAST	FREEWAY
114021-11-86LARA VICPRINCESPRINCESPREHAT114025-10-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESPRINCESFREEHAY114001-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY114025-11-86LARA VICPRINCESFREEHAYFREEHAY115021-10-86EAUFORT VICWESTERNFREEHAY2115021-10-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115014-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115015-11-86BEAUFORT VICWESTERNHIGHAY2LANE UNDIVID115025-11-86BAUFORT VICWESTERNHIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116088-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012-11-86BALMATTUN VICHUNE HIGHAY2LANE UNDIVID116012	1130 18-11-86 HEARN	IES DAK VIC	PRINCES HIGHWAY EAST	FREEHAY
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117017-88-11-86MUCKATAHBENALLA-TOCUMNAL ROAD2 LANE UNDIVIDE <td>1130 20-11-86 HEARN</td> <td>IES OAK VIC</td> <td>PRINCES HIGHNAY EAST</td> <td>FREEWAY</td>	1130 20-11-86 HEARN	IES OAK VIC	PRINCES HIGHNAY EAST	FREEWAY
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117017-88-11-86MUCKATAHBENALLA-TOCUMNAL ROAD2 LANE UNDIVIDE <td>1140 21-11-86 LARA</td> <td>VIC</td> <td>PRINCES HIGHWAY WEST</td> <td>FREEWAY</td>	1140 21-11-86 LARA	VIC	PRINCES HIGHWAY WEST	FREEWAY
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE1170	1140 25-10-86 LARA	VIC	PRINCES HIGHWAY WEST	FREEWAY
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE1170	1140 01-11-86 LARA	VIC	PRINCES HIGHNAY WEST	FREEWAY
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117017-88-11-86MUCKATAHBENALLA-TOCUMNAL ROAD2 LANE UNDIVIDE <td>1140 25-11-86 LARA</td> <td>VIC</td> <td>PRINCES HIGHWAY WEST</td> <td>FREEWAY</td>	1140 25-11-86 LARA	VIC	PRINCES HIGHWAY WEST	FREEWAY
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116092-12-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117017-88-11-86MUCKATAHBENALLA-TOCUMNAL ROAD2 LANE UNDIVIDE <td>1150 21-10-86 BEAUF</td> <td>ORT VIC</td> <td>WESTERN HIGHWAY</td> <td>2 LANE UNDIVIDED</td>	1150 21-10-86 BEAUF	ORT VIC	WESTERN HIGHWAY	2 LANE UNDIVIDED
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE1170	1150 30-10-86 BEAUF	ORT VIC	WESTERN HIGHWAY	2 LANE UNDIVIDED
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE1170	1150 14-11-86 BEAUF	ORT VIC	WESTERN HIGHWAY	2 LANE UNDIVIDED
115025-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE115027-11-86BEAUFORT VICHESTERN HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHNAY2 LANE UNDIVIDE116029-11-86GLENBURN VICHUME HIGHNAY2 LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE1170	1150 15-11-86 BEALF	ORT VIC	UESTERN HTGHNAY	
115027-11-86BEAUFORT VICHESTERN HIGHNAY2LANEUNDIVIDE116008-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116008-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116012-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116013-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116029-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116029-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116029-11-86BALMATTUH VICHUHE HIGHNAY2LANEUNDIVIDE116029-11-86GLENBURN VICHUHE HIGHNAY2LANEUNDIVIDE117025-10-86GLENBURN VICHELBA HIGHNAY2LANEUNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2LANEUNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2LANEUNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2LANEUNDIVIDE117027-11-86GLENBURN VICNELBA HIGHNAY2LANEUNDIVIDE117027-11-86MUCKATAHBENALLA-TOCUMNALROAD2LANEUNDIVIDE				2 LANE UNDIVIDED
116008-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116008-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116082-12-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116082-12-86GLENBURN VICHUME HIGHMAY2LANE UNDIVIDE117025-10-86GLENBURN VICHUME HIGHMAY2LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86MUKATAHBENALLA-TOCUMMAL ROAD2LANE UNDIVIDE				
1160B8-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116012-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116022-12-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE(^~988-11-86MUCKATAHBENALLA-TOCUMMAL ROAD2LANE UNDIVIDE				
116012-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116013-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116082-12-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE116082-12-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE117025-10-86GLENBURN VICHELBA HIGHMAY2LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117013-11-86GLENBURN VICHELBA HIGHMAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICNELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICNELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICNELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICNELBA HIGHMAY2LANE UNDIVIDE(^~988-11-66MUCKATAHBENALLA-TOCUMMAL ROAD2LANE UNDIVIDE				
116013-11-86BALMATTUM VICHUME HIGHMAY2 LANE UNDIVIDE116029-11-86BALMATTUM VICHUME HIGHMAY2 LANE UNDIVIDE116082-12-86BALMATTUM VICHUME HIGHMAY2 LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2 LANE UNDIVIDE(~908-11-86HUCKATAHBENALLA-TOCUMMAL ROAD2 LANE UNDIVIDE				
116029-11-86BALMATTUN VICHUME HIGHNAY2LANE UNDIVIDE116082-12-86BALMATTUM VICHUME HIGHNAY2LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117027-11-86GLENBURN VICNELBA HIGHNAY2LANE UNDIVIDE(^~988-11-86MUCKATAHBENALLA-TOCUMNAL ROAD2LANE UNDIVIDE			••••••••••••••	
116082-12-86BALMATTUM VICHUME HIGHMAY2LANE UNDIVIDE117025-10-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117011-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117013-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117025-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICNELBA HIGHMAY2LANE UNDIVIDE(^~998-11-86MUCKATAHBENALLA-TOCUMMAL ROAD2LANE UNDIVIDE				
117025-10-86 GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117011-11-86 GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117013-11-86 GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117025-11-86 GLENBURN VICMELBA HIGHNAY2 LANE UNDIVIDE117027-11-86 HUCKATAHBENALLA-TOCUMNAL ROAD2 LANE UNDIVIDE				
117011-11-86GLENBURN VICMELBA HIGHMAY2LANE UNDIVIDE117013-11-86GLENBURN VICHELBA HIGHMAY2LANE UNDIVIDE117025-11-86GLENBURN VICHELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICHELBA HIGHMAY2LANE UNDIVIDE117027-11-86GLENBURN VICHELBA HIGHMAY2LANE UNDIVIDE(^*998-11-86HUCKATAHBENALLA-TOCUMMAL ROAD2LANE UNDIVIDE				
117013-11-86 GLENBURN VICHELBA HIGHNAY2 LANE UNDIVIDE117025-11-86 GLENBURN VICHELBA HIGHNAY2 LANE UNDIVIDE117027-11-86 GLENBURN VICHELBA HIGHNAY2 LANE UNDIVIDE(^ 9 08-11-86 HUCKATAHBENALLA-TOCUMNAL ROAD2 LANE UNDIVIDE				
117025-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE117027-11-86GLENBURN VICMELBA HIGHNAY2LANE UNDIVIDE(^^908-11-86MUCKATAHBENALLA-TOCUMNAL ROAD2LANE UNDIVIDE				•· - · · · ·
1170 27-11-86 GLENBURN VIC NELBA HIGHNAY 2 LANE UNDIVIDE (~~9 88-11-86 MUCKATAH BENALLA-TOCUMNAL ROAD 2 LANE UNDIVIDE				
("9 88-11-86 HUCKATAH BENALLA-TOCUMHAL ROAD 2 LANE UNDIVIDE				
NAME TI ATAM REMATAN REMATAN 2 I AME TANTUTAN 2 I AME TANTUTAN				
				2 LANE UNDIVIDED
				2 LANE UNDIVIDED
1180 02-12-86 MUCKATAH VIC BENALLA-TOCUMHAL ROAD 2 LANE UNDIVIDE	1159 02-12-86 MUCKA	TAH VIC	BENALLA-TOCUMMAL ROAD	2 LANE UNDIVIDED

<u>■₽₫₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽</u>	

ON DATE		RGAD NAME	ROAD TYPE
.90 22-11-	36 LANG LANG VIC 36 LANG LANG VIC 36 LANG LANG VIC 36 CADES COUNTRY	SOUTH GIPPSLAND HIGHNAY	4 LANE DIVIDED
90 25-11-	36 LANG LANG VIC	SOUTH GIPPSLAND HIGHWAY	4 LANE DIVIDED
9 27-11-	36 LANG LANG VIC	SOUTH GIPPSLAND HIGHNAY	4 LANE DIVIDED
85 86-12-	B6 CADES COUNTRY B6 SHAILER PARK B6 PIMPAMA RIVER B6 SOUTH OF TALLEBUDGERRACK B6 NORTH OF LOGAN RIVER B6 QUEENSLAND B6 QUEENSLAND B6 QUEENSLAND B6 QUEENSLAND B6 QUEENSLAND B6 QUEENSLAND B6 QUEENSLAND B6 RAVENSLAND B6 RAVENSTHORPE H.A. B6 RAVENSTHORPE H.A. B6 SOUTH DONGARA H.A. B6 PORT HEDLAND H.A.	PACIFIC HIGHNAY	FREEWAY
10 89-12-	36 SHAILER PARK	PACIFIC HIGHNAY	4 LAND DIVIDED
15 83-12-	36 PIMPAMA RIVER	PACIFIC HIGHWAY	4 LANE DIVIDED
20 06-12~	SE SOUTH OF TALLEBUDGERRACK	PACIFIC HIGHWAY	2 LANE DIVIDED
25 68-12-	36 NORTH OF LOGAN RIVER	MT LINDSAY HIGHWAY	2 LANE DIVIDED
30 28-10-	36 QUEENSLAND	BRUCE HIGHNAY	FREEWAY
35 31-10-	B6 QUEENSLAND	BRUCE HIGHWAY	FREEWAY
40 01-11-	36 QUEENSLAND	BRUCE HIGHNAY	4 LANE
45 04-11-	36 GUEENSLAND	BRUCE HIGHWAY	2 LANE
50 05-11-	36 QUEENSLAND	BRUCE HIGHNAY	2 LANE
00 13-10-	36 WESTERN AUSTRALIA	GREAT EASTERN HIGHNAY	HIGHNAY
01 15-10-	36 BALLADONIA W.A.	EYRE HIGHWAY	HIGHMAY
802 16-10-	B6 RAVENSTHORPE N.A.	HASSELL HIGHWAY	HIGHNAY
03 18-10-1	36 BEAUFORT N.A.	ALBANY HIGHWAY	HIGHNAY
84 21-10-	36 SOUTH DONGARA H.A.	BRAND HIGHWAY	HIGHNAY
0 5 26-1 0 -1	36 MEEKATHANA W.A.	GREAT NORTHER HIGHNAY	HIGHNAY
06 24-10-1	36 PORT HEDLAND W.A.	NORTH WEST COASTAL	HIGHNAY
00 16-10-	36 PORT HEDLAND W.A. 36 SOUTH AUSTRALIA 36 THO WELLS SOUTH AUSTRALIA	STURT HIGHMAY	2 LANE UNDIVIDED
01 16-10-	B6 THO WELLS SOUTH AUSTRALIA	PORTH WAKEFIELD ROAD	4 LANE DIVIDED
02 18-10-4	36 THO WELLS SOUTH AUSTRALIA	PORTH WAKEFIELD ROAD	4 LANE DIVIDED
93 18-10-	36 CALLINGTON SOUTH AUSTRALIA 36 CALLINGTON SOUTH AUSTRALIA 36 NURIOOTPA, SOUTH AUSTRALIA	SOUTH EAST HIGHWAY	FREEWAY
04 28-10-	36 CALLINGTON SOUTH AUSTRALIA	SOUTH EAST HIGHNAY	FREEWAY
5 28-10-1	6 NURIOOTPA, SOUTH AUSTRALIA	STURT HIGHNAY	2 LANE UNDIVIDE
66 38-10-	36 NURICOTEA, SOUTH AUSTRALIA 36 CALLINGTON, SOUTH AUSTRALIA 36 NURICOTEA, SOUTH AUSTRALIA 36 THO WELLS, SOUTH AUSTRALIA	SOUTH EAST HIGHNAY	FREEMAY
07 01-11-	36 NURIOOTPA, SOUTH AUSTRALIA	STURT HIGHNAY	2 LANE UNDIVIDE
88 84-11-	6 THO WELLS. SOUTH AUSTRALIA	PORT WAKEFIELD	4 LANE DIVIDED
01 28-10-	6 MANGALORE TAS.	MIDLANDS HIGHWAY	
01 01-11-	6 MANGALORE TAS.	HIDLANDS HIGHNAY	HIGHNAY
03 23-10-1	6 TAS	BASS HIGHWAY	HIGHMAY
83 28-18-	6 TAS	BASS HIGHWAY	HIGHNAY
83 86-11-	S6 TAS	BASS HIGHMAY	HIGHMAY
81 28-10-1	16 ACT	MAJURA RD	MAIN ROAD
8 1 11-11-6	16 ACT	MAJURA ROAD	MAIN ROAD
81 13-12-4	16 ACT	MAJURA ROAD	MAIN ROAD
82 38-89-8	16 ACT	BARTON HIGHNAY	DIVIDED
0 2 0 1-11-8	16 THO WELLS, SOUTH AUSTRALIA 36 MANGALORE TAS. 36 MANGALORE TAS. 36 TAS 36 TAS 36 TAS 36 ACT 36 ACT 36 ACT 36 ACT 36 ACT	HIDLANDS HIGHMAY HIDLANDS HIGHMAY BASS HIGHMAY BASS HIGHMAY BASS HIGHMAY MAJURA RD MAJURA ROAD MAJURA ROAD BARTON HIGHMAY BARTON HIGHMAY BARTON HIGHMAY	DIVIDED
82 28-18-	A ACT	BARTON HIGHNAY	DIVIDED

NUMBER OF RECORDS is 94

OCN SPEED HETER		SPEED LIMIT	LAND USE	WEATHER	VISIBILIT
UNDI KRII AMPHOM			FARMING	FINE	DARK
002 KR11 AMPHON	eter	100	GRAZING	FINE, OVERCAST	CLEAR
882 KR11 AMPHON	ETER 15M SP.	100	GRAZING	FINE, OVERCAST	CLEAR
003 KR11 AMPHON	ETER 15M SP.	110	BUSHLAND	FINE, SUNNY	CLEAR
983 KR11 AMPHOM	ETER	110	BUSHLAND	FINE	CLEAR
004 KR11 AMPHON	ETER	198	GRAZING	FINE/DUSK/2000 DARK	CLEAR
885 KR11 AMPHON		199	GRAZING/FARMING	FINE/SUNNY	CLEAR
006 KR11 AMPHON	ETER 15M SP.	198	FARMING	FINE	CLEAR
887 KR11 AMPHON	ETER 15H SP.	168	FARMING	FINE	CLEAR
008 KR11 AMPHOM	ETER	110	GRAZING	OVERCAST	CLEAR
009 KR11 AMPHON	ETER 15H SP.	110	GRAZING	OVERCAST	CLEAR
010 KR11 AMPHOM	ETER 15M SP.	100	GRAZING	OVERCAST	CLEAR
011 KR11 AMPHON			GRAZING	FINE, OVERCAST	CLEAR
012 KR11 AMPHON			FARMLAND	FINE, WINDY	CLEAR
110 SPEED GUN S			AGRICULTURAL	INTERMITTENT SHOWER	GOOD
110 SPEED GUN S			AGRICULTURAL	FINE	6000
110 SPEED GUN S			RURAL	OVERCAST	G000
110		100	RURAL	LIGHT RAIN, OVERCAS	
110 FALCON		100	AGRICULTURAL	FINE/FOGGY	2 991/ 6000
129 SPEED GUN 8		100	RURAL	FAIN WINDY	VERY POOR
120 SPEED GUN 8		100	RURAL FARMING	FINE	GOOD
120 SPEEDGUN 6		190	RURAL	OVERCAST	G000
128 SPEEDGUN 6		100	RURAL	RAIN/HAIL/SLEET	APPROX. 5
128 SPEEDGUN 6		100	RURAL	OVERCAST, MISTY RAI	
138 SPEEDGUN 6		100	FARM/RURAL	OVERCAST, RAINING	FAIR
8 SPEEDGUN 6		100	FARM/RURAL	FINE OVERCAST	500D
130 KUSTUM		100	RURAL	600D	6000
130 SPEEDGUN 8		169	FARMING	RAIN/OVERCAST	G000
					6000
139 SPEEDGUN 8		100	FARMING CONTACT	FINE & OVERCAST	6000
140 SPEEDGUN 6	(04040)	100	RURAL FARMING		
140 SPEEDGUN 6	(Kalvar)	198	AGRICULTURAL	FINE	G000
140 SPEEDGUN 8		188	AGRICULTURAL	OVERCAST	6000
148 SPEEDGUN 8		199	FARMING	FINE (HOT)	600D
150		198	RURAL FARMING	OVERCAST	6000
158 SPEEDGUN 8		100	AGRICULTURAL	RAIN	600D
150 SPEEDGUN 8		109	FARMING	FINE	6000
158 SPEEDGUN 8		100	FARMING	600D	6000
150 FALCON		100	AGRICULTURAL	FINE	6000
150 FALCON		100	AGRICULTURAL	FINE/COLD	6000
160 SPEEDGUN 8		190	FARMING	FINE	e000
168 SPEEDGUN 6		190	FARMING	FINE/HILD/SUNNY	EXCELLENT
160 SPEEDGUN 8		188	FARMING	6000	600D
160 SPEEDGUN/FA	LCON	100	AGRICULTURAL	FINE	600D
168 RADAR		100	FARM, RURAL	FINE	6000
160 FALCON		190	FARM	FINE	6000
170 SPEEDGUN		100	RURAL	LIGHT RAIN/LITTLE F	
170 SPEEDGUN 6		100	RURAL	OVERCAST, LIGHT RAI	
179 SPEEDGUN 6		196	RURAL	FINE & MILD	6000
170 SPEEDGUN 8		100	FARH/RURAL	FINE	POOR UNTI
170 SPEEDGUN 8		100	FARM	FINE	POOR UNTI
". SPEEDGUN		100	FARH/GRAZING	FINE	POOR UNTI
.60 SPEEDGUN		100			6000
180 SPEEDGUN 6		100	AGRICULTURAL	6000	VERY 9000
180 SPEEDGUN 8		180	AGRICULTURAL		

##==##################################	**********		IX 131533XX22XX2XX2XX	132277 <i>5</i> 272222
LOCN SPEED METER	SPEED LI	MIT LAND USE	HEATHER	VISIBILITY
⋍ ⋥ ⋥⋿⋥⋍ <u>⋥</u> ⋨⋬⋍⋍⋕⋥⋥⋨⋍⋍∓⋸⋍	*********	=======================================	=======================================	
1190 SPEEDGUN 6	190	FARM	FINE	6000
1199 SPEEDGUN 6	100	FARM	FOG/FINE	FOG UNTIL 8
1198 SPEEDGUN 6	100	FARM	FINE	CLEAR
1295 RADAR SPEED GUN	100	FOREST	FINE	G000
1210 RADAR SPEED GUN	100	RESIDENTIAL	FINE	6000
1215 RADAR SPEED GUN	100	RURAL	FINE	6000
1220 RADAR SPEED GUN	100	RESIDENTIAL	CLOUDY WITH SHOWERS	POOR
1225 RADAR SPEED GUN	100	RURAL	FINE	FAIR
1230 RADAR SPEED GUN	100	RURAL	FINE	600D
1235 RADAR SPEED GUN	100	PINE FOREST	FINE	600D
1240 RADAR SPEED GUN	100	SMALL FARMS	FINE	6000
1245 RADAR SPEED GUN	100	RURAL	FINE	600D
1250 RADAR SPEED GUN	100	FOREST	FINE	G0 0D
1300 KR11 - DIGITECTOR	110	SCRUB	FINE	CLEAR
1301 KR11 - DIGITECTOR	110	SCRUB	FINE	CLEAR
1302 KR-11 - DIGITECTOR	110	RURAL	HEAVY RAINS DAY & N	6000
1303 DIGITECTOR	110	RURAL/GRAZING	RAIN THEN OVERCAST	G00D
1304 DIGITECTOR	110	VIRGIN SCRUB	FINE	G000
1305 DIGITECTOR	110	STATION GRAZING	600D	CLEAR
1386 DIGITECTOR	110	GRAZING	FINE	CLEAR
1400 SPEEDGUN	110	FARMING	CLEAR	CLEAR
1401 SPEEDGUN	110	FARMING	CLEAR	CLEAR
1482 SPEEDGUN	110	FARMING	CLEAR	CLEAR
1403 SPEEDGUN	110	GRAZING	SHOWERS	CLEAR
1494 SPEEDGUN	110	GRAZING	CLEAR	6000
5 SPEEDGUN	110	FARMING	CLEAR	6000
1486 SPEEDGUN	110	GRAZING	FINE	6000
1407 SPEEDGUN	110	FARMING	FINE	6000
1408 SPEEDGUN	118	FARMING	FINE	6000
1501 FALCON SPEED GUN	110	GRAZING	FINE/CLEAR	6000
1501 FALCON SPEED GUN	110	GRAZING	FINE	GOOD
1503 STARFLITE RADAR GUN		FARMING	FINE, 1515 LT SHOWE	G000
1503 RADAR GUN		FARMING	FINE	CLEAR
1583 RADAR GUN		FARMING	FINE, SCATTERED CLO	CLEAR
1681 RADAR SPEED GUN	100	GRAZING	FINE/CLOUDY	CLEAR
1601 RADAR SPEED GUN	100	GRAZING		
1601 RADAR SPEED GUN	100	GRAZING		
1682 RADAR SPEED GUN	199	RURAL(E) RES(N) NO ACCESS	LIGHT OVERCAST	GOOD
1602 RADAR SPEED GUN	100	RURAL	FINE	CLEAR
1682 RADAR SPEED GUN	199	RURAL/URBAN	OVERCAST FINE	CLEAR

NUMBER OF RECORDS is 94

.

Table A4:

FIRST AFTER TRUCK SPEED STUDY - TEMPORAL ATTRIBUTES

.	***************************************		
	ROAD NAME	DAY	DATE START FINISH
	New England Hwy	Saturday	28/03/87 0145 0545
2002	Hume Hwy	Nonday	30/03/87 1190 1540
2003	Newcastle Expressway	Saturday	28/03/87 1015 1430
2004	Hume Hwy	Honday	30/03/87 1800 2200
2005	Hume	Tuesday	31/03/87 1345 1745
2006	Newell Hwy	Friday	03/04/87 1830 2230
	Newell Hwy	Saturday	04/04/87 0100 0500
2008	F5-South Western Freeway	Monday	86/84/87 1938 2488
	F5-South Western Freeway	Tuesday	87/84/87 8888 8488
2010	Hume Highway	Saturday	84/84/87 1938 2480
2011	Hume Hwy	Tuesday	31/03/87 2400 0415
2012	New England Hwy	Tuesday	07/04/87 1030 1430
	Hume Highway	Saturday	14/03/87 0600 1000
	Hume Highway	Tuesday	17/03/87 1800 2230
	Hume Highwey	Thursday	19/03/87 0000 0400
	Western Highway	Thursday	19/03/87 0600 1000
	Western Highway	Saturday	04/04/87 1800 2200
	Western Highway	Tuesday	17/03/87 0000 0400
	Princes Highway East	Tuesday	17/03/87 0600 1000
	Princes Highway East	Thursday	19/03/87 1800 2200
	Princes Highway East	Saturday	84/84/87 8088 8408
	Princes Highway West	Tuesday	31/03/87 1800 2200
2150	Western Highway	Saturday	28/03/87 0600 1000
	Western Highway Western Highway	Tuesday	31/03/87 1800 2200
	Hume Highway	Thursday Saturday	92/94/87 0000 9400 28/93/87 9800 6500
	Hume Highway	Saturday	28/03/87 0500 1000
	Hume Highway	Tuesday	31/93/87 9999 9499
	Hume Highway	Thursday	82/94/87 1888 2286
	Melba Highway	Tuesday	24/03/87 0600 1900
	Melbs Highway	Thursday	26/03/87 1800 2200
	Benalia - Tocumval Rd	Saturday	21/03/87 0000 0400
	Benalla - Tocumwal Rd	Tuesday	24/03/87 1800 2200
	Sth Gippsland Highway	Tuesday	24/83/87 9698 1088
2198	Sth Gippsland Highway	Saturday	21/83/87 1888 2288
2198	Sth Gippsland Highway	Thursday	26/03/87 8998 8498
2285	Pacific Hwy	Saturday	21/03/87 0745 1145
2210	Pacific Hwy	Tuesday	24/03/87 0100 0500
	Pacific Hwy	Wednesday	01/04/87 1200 1600
	Pacific Highway	Saturday	64/84/87 8880 8480
	Ht Lindesay Huy	Nondey	27/04/87 1930 2330
	Bruce Highway	Tuesday	31/83/87 1888 2288
	Bruce Highway	Friday	03/04/87 0015 0415
	Bruce Highway	Saturday	08/04/87 1800 2200
	Bruce Highway	Tuesday	31/03/87 1045 1445
	Bruce Highway	Wednesday	88/94/87 1198 1599
	Great Eastern Highway	Nonday	30/93/87 1290 1290 01/0//87 8700 8700
	Eyre Highway Hassell Highway	Wednesday	81/04/87 8788 8700 82/04/87 1488 1488
	Albany Highway	Thursday	#2/84/87 14## 14## 84/84/87 100# 100#
	Brand Highway	Saturday Monday	86/84/87 1030 1030
	North West Coastal Highway	Thursday	99/84/87 9899 9899
2040		Indianal	4// 4/0/ 4044 4040

FIRST AFTER TRUCK SPEED STUDY - TEMPORAL ATTRIBUTES

,

.

			Page # 2
LOL. ROAD NAME	DAY		FINISH
	************************		***********
2306 Great Northern Highway	Saturday	11/04/87 0900	8988
2400 Sturt Highway	Thursday	26/03/87 0200	0600
2401 Port Wakefield Road	Thursday	26/03/87 1800	2200
2402 Port Wakefield Road	Saturday	28/03/87 0200	0600
2403 SouthEast Highway	Saturday	28/03/87 1900	2388
2404 SouthEast Highway	Tuesday	31/03/87 0200	8688
2405 Sturt Highway	Tuesday	31/03/87 1800	2280
2406 SouthEast Highway	Thursday	02/04/87 1200	1600
2407 Sturt Highway	Saturday	04/04/87 0800	1260
2408 Port Wakefield Road	Tuesday	07/04/87 1400	1800
25 0 1 Midlands Highway	Tuesday	31/03/87 1400	1860
2501 Midlands Highway	Saturday	11/04/87 1800	2200
2503 Bass Highway	Thursday	02/04/87 1031	1431
2503 Bess Highway	Tuesday	31/03/87 1800	2200
26 01 Majura Ro md	Tuesday	24/03/87 1400	1890
2601 Majura Road	Thursday	62/84/87 1868	2280
2601 Majura Road	Saturday	28/03/87 0700	1100
2602 Barton Hwy	Tuesday	31/03/87 1800	2200
2602 Barton Hwy	Thursday	26/03/87 1400	1800
2602 Berton Huy	Tuesday	24/83/87 0700	1100

.

NUMBER OF RECORDS is 72

•

OCN DATE	LOCATION		ROAD TYPE
±±±±±±±± 1 28/03/87¢;		New England Huy	Highway
2002 38/03/87		Hune Hwy	Highway
28/83/87		Neucastle Expressury	Expressway
2084 38/83/87		Hume Hwy	Hwy
2985 31/83/87		Hume	HWY
2006 83/84/8		Neuell Huy	Highway
2007 84/64/87		Neuell Hwy	Highway
2008 06/04/87		F5-South Western Freeway	Freeway
2009 87/84/87	Menangle	F5-South Western Freeway	Freeway
2010 04/04/87	'Bernima	Hume Highway	Highway
911 31/03/87	'Goulburn	Huae Hvy	Highway
2012 07/04/87	Singleton	New England Hwy	Highway
110 14/03/87	VIC	Hume Highway	Highway
2110 17/03/87	VIC Kilmore	Hume Highway	Freeway
2110 19/03/87	VIC Kilmore	Hume Highway	Freeway
120 19/03/87		Western Highway	Freeway
120 84/84/87	VIC Ballan	Western Highway	Freeway
128 17/83/8	VIC Ballan	Western Highway	Freevey
130 17/03/87	VIC Hearnes Dak	Princes Highway East	Freeway
130 19/03/87	VIC Hearnes Oak	Princes Highway East	Freeway
130 04/04/87	VIC Hearnes Oak	Princes Highway East	Freeway
140 31/03/87		Princes Highway West	Freeway
150 28/03/87	VIC Beaufort	Western Highway	2 Lane Undivi
150 31/03/87	VIC Beaufort	Western Highway	2 Lane Undivi
	VIC Beaufort	Western Highway	2 Lane Undivi
	VIC Belmettum	Hume Highway	2 Lane Undivi
160 28/03/87	VIC Balmattum	Hume Highway	2 Lane Undivi
:160 31/03/87	VIC Balmettum	Hume Highway	2 Lane Undivi
	VIC Balmettum	Hume Highway	2 Lane Undivi
	VIC Glenburn	Melba Highway	2 Lane Undivi
	VIC Glenburn	Helba Highway	2 Lane Undivi
	'VIC Huckatah	Benalla - Tocumwal Rd	2 Lane Undivi
	VIC Muckatah	Benalla - Tocumual Rd	2 Lane Undivi
	VIC Lang-Lang	Sth Gippsland Highway	2 Lane Divide
	VIC Lang-Lang	Sth Gippsland Highway	2 Lane Divide
	VIC Lang-Lang	Sth Gippsland Highway	2 Lane Divide
	QLD Cades County	Pacific Hwy	Freeway
· · · · ·	QLD Sheiler Park	Pacific Hwy	Highway
	GLD Pimpene River	Pacific Hwy	Highway
220 84/84/87		Pacific Highway	Highway
225 27/64/87		Ht Lindesay Huy	Highway
230 31/03/87		Bruce Highway	Freeway
235 83/64/87		Bruce Highway	Frecuey
248 88/84/87		Bruce Highway	4 Lane
245 31/03/87		Bruce Highway	2 Lone
250 96/04/87 300 30/03/87		Bruce Highway Great Eastern Highway	2 Lane 2 Lane Undivi
	WA Balladonia	Eyre Highway	2 Lane Undivi
	WA Revensthorpe	Hassell Highway	2 Lane Undivi
	' HA Beaufort	Albany Highway	2 Lane Undivi
	WA South Dongern		2 Lane Undivi
	'WA Souch Dongerne 'WA Port Hedland	Brand Highway North West Coastal Highway	2 Lane Undivi
2007 97/94/0/			
386. 11 /84 /47	WA Meekatharra	Great Northern Highway	2 Lane Undivi

LOCN DATE LOCATION	ROAD NAME	ROAD TYPE
2401 26/03/87 SA Two Wells	Port Wakefield Road	Highway
2402 28/03/87 SA Two Wells	Port Wakefield Road	Highway
2403 28/03/87 SA Callington	SouthEast Highway	Highway
2404 31/03/87 SA Callington	SouthEast Highway	Highway
2405 31/03/87 SA Nuricotpa	Sturt Highway	Highway
2406 02/04/87 SA Callington	SouthEast Highway	Highway
2487 84/84/87 SA Nuricotpa	Sturt Highway	Highway
2408 07/04/87 Two wells, SA	Port Wakefield Road	Highway
2501 31/03/87 TAS Mangalone	Midlands Highway	Highway
2501 11/04/87 TAS Mangalore	Midlands Highway	Highway
2503 02/04/87 TAS	Bass Highway	Highway
2503 31/03/87 TAS	Bass Highway	Highway
2601 24/03/87 ACT	Majura Road	2 Lane Undivi
2601 02/04/87 ACT	Majuna Road	2 Lane Undivi
2601 28/03/87 ACT	Majura Road	2 Lane Undivi
2602 31/03/87 Act	Barton Hwy	4 Lane Divide
2602 26/03/87 ACT	Berton Hwy	4 Lane Divide
2602 24/03/87 ACT	Barton Hwy	4 Lane Divide

NUMBER OF RECORDS is 72

•

****	: <u>**=**********************************</u>		**********************	*************	
LOCN	SPEED METER	SPEED LIMIT	LAND USE	HEATHER	VISIBILITY
		*********	X 3 8 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1 % 1		*****************
4.001	KR11 Amphometer	100	Grazing	Fine	Clear
2002	KR11 Amphometer 15m spc	100	Grazing	Fine/Cloudy/V	Clear
2083	Amphometer(Hultiphom5m)	118	Bush	Fine/Sunny	Clear
2004	Multiphom (5m spacing)	100	Grazing	Fine	Good
2005	Multiphom (5m spacing)	100	Grazing	Fine	Good
2006	KR11 Amphometer	100	Farmland	Fine	Good
2007	KR11 Amphometer(15m Spc	100	Farmland	Fine	Good
2008	KR11 Amphometer(15m Spc	110	Runal	Night/Misty	Misty/Fog
2009	KR11 Amphometer/15m Spc	110	Rural	Night/Fog	Fog
	Multiphom 5m Spacing	100	Grazing	Fine/Dark	Clear
	KR11 Amphometer 15m Spc		Grazing	Fine,cold	Clear
	KR11 Amphometer 15m Spc		Grazing	Fine, overcast	Clear
	Kustom Falcon, Speedgun6		Runal	Fine	Dark -> Fine and C
	Speedgunó	100	Agricultural	Fine	Fine and Clear
	Speedgun6	100	Farm (Fine Poin/Sec	Good (Night)
	Speedgunó	199	Agricultural	Rain/Fog	Fair/poor
	Speedgun6	100	Farm	Fine Fine	Good Good (Night)
	Speedgunó	100	Fare	Fine	Good
	Speedgunó Speedgunó	190 192	Rurel Rurel	Overcast	Good
	Speedgun8	100	KUL 91	fine	6000
	Speedgun8	100	Runal	Fine	Good
	Speedgun8	100	Runal	Het	Good
	Speedgun6	100	Runal	Overcast	Dark
	Speedgunó	190	Fare	Fog Patches	Variable
	Speedgun6	100	Rural	Fine	Good
_	Speedgun6	100	Rural	Overcast	Good
	Speedgun6	160	Runal/Farming	Fine	Good
216 8	Speedgun8	100	Runal/Farming	Fine	Clear
2170	Speedgun6	100	Runal	Fine	Good
2178	Speedgunó	109		Fine	Light Hist
2180	SpeedGun6	100	Farm	Fine	Good
21 80	SpeedGun6	100	Fare	Fine	Good
219 0	SpeedGun6	100	Fara	Overcast	Good
	SpeedGun6	100	Farm	Overcast	Good Day/Night
	SpeedGun6	100	Farm	Foggy	Poor
	Reder Hand Gun	198	Runal	Fine	Good
	Radar Hand Gun	100	Residential No acces		Clear
	Radar Hand Gun	100	Runal	Cloudy	Clear
2220	De dese Maria de Sera	100	Residential	Fine	Good (for night ti
	Raden Hand Gun	190	Runal	Showers Fine	Poor Good
	Rader Speed Gun	100	Runal Rine Ferret	Fine	Good
	Radan Speed Gun Radan Speed Gun	100	Pine Forest Small Farms	Fine	Good
	Radar Speed Gun	100 100	Runal	Fine	Good
	Raden Speed Gun	100	Forest	fine	Good
	Digitector - Light Beam		Virgin Scrub	Fine	Clear
	Digitector - Light Beam		Virgin Scrub	"Hot" - Fine	Clear
	Digitector - Light Beam		Fares	Fine - Hild	Good
	Digitector - Light Beam		Runal - Grazing	Rain Periods,0	
	Digitector - Light Beam		Virgin Scrub	Hainly Fine -	
	Digitector - Light Beam		Grazing	Fine + Very Ho	
	Digitector - Light Beam		Grazing	Good	Clear
2498	Speed Gun	118	Farming	Clear	

FIRST AFTER TRUCK SPEED STUDY - SITE CHARACTERISTICS

BZE=:		=======================================				=1==\$383838===\$53385=
N	SPEED	METER	SPEED LIMIT	LAND USE	WEATHER	VISIBILITY
*===1	******				*======	*==*******
2401	Speed	Gun	110	Ferming	Clear	
2402	Speed	Gun	110	Farming	Continuous Rai	Poor
2403	Speed	Gun	110	Farming	Showens	Good
24 8 4	Speed	Gun	110	Farming	Light Showers	Good
2485	Speed	Gun	110	Farming	Clear	Good
2686	Speed	Gun	110	Forming	Fine	Good
2407	Speed	Gun	110	Farming	Fine	Good
2488	Speeds	un	110	Farming	Fine	Very good
2501	Falcon	Speed Gun	119	Grazing	Overcast/Cloud	Good
2501	Falcon	i Speed Gun	110	Grazing	Fine	Good
2503	Radar	Gun	110	Farming	Fine	Clear
2503	Radar	Gun	110	Farming	Fine	Clear
2681	Radar	Gun	100	Grazing	Fine	Good
2601	Radar	Gun	108	Grazing	Fine	Clear
2601	Rader	Gun	100	Grazing	Fine	Good
2682	Radar	Gun	100	Rural(E) Residential		
2682	Radar	Gun	199	Rurai (E) Residentia		
2682	Redar	Gun	198	Rural (E) Residentia		Good

.

.

NUMBER OF RECORDS is 72

SECOND AFTER TRUCK SPEED STUDY - TEMPORAL ATTRIBUTES

ROAD NAME	DAY	DATE	START	FINIS
11 New England Hwy	Saturday	17/10/87		0688
2 Hume Highway	Monday	12/18/87	1145	1615
33 Newcastle Freeway	Saturday	17/10/87	1130	1715
84 Hume Highway	Honday	12/10/87	1800	2288
95 Hume Highway	Tuesday	13/10/87	1488	1890
36 Newell Highway	Friday	23/10/87	1830	2238
97 Newell Highway	Saturday	24/18/87	0100	8588
38 Hume Highwey	Tuesday	27/10/87	1829	2400
9 Hume Highway	Wednesday	28/19/87	2400	0430
9 Hume Highway	Seturday	31/10/87	1938	2488
li Hume Highway	Tuesday	13/10/87	2400	0415
.2 New England Highway	Tuesday	27/10/87	1030	1450
10 Hume Highway	Tuesday	29.9.87	1800	2330
8 Hume Highway	Thursday	8.10.87	2400	8488
0 Hume Highway	Saturday	10.10.87	0600	1999
18 Western Highway	Tuesday	22.9.87	2400	0400
10 Western Highway	Thursday	22.10.87	0600	1000
10 Western Highway	Saturday	24.10.87	1800	22 80
0 Princes Highway Eest	Thursday	8.10.87	1800	2200
98 Princes Highway East	Seturday	3.10.87	2400	0400
0 Princes Highway	Tuesday	29.9.87	1890	2200
9 Western Highway	Thursday	1.10.87	2400	0400
0 Western Highway	Tuesday	29.9.87	1800	2200
Western Highway	Saturday	3.10.87	8688	1000
w Hume Highway	Saturday	19.9.87	8688	1008
8 Hume Highway	Tuesday	22.9.87	2400	8489
8 Hume Highway	Thursday	17.9.87	1800	2200
9 Melba Highway	Tuesday	22.9.87	6666	1000
9 Helba Highway	Thursday	22.10.87	8680	1008
0 Benalis - Tocumwal Road	Tuesday	22.9.87	1800	2200
0 Benalla - Tocumwal Road	Saturday	3.10.87	2490	0400
e South Gippsland Highway	Saturday	10.10.87	1889	2208
South Gippsland Highway	Thursday	1.10.87	2408	0400
• South Gippsland Highway	Tuesday	29,9.87	8688	1008
5 Pacific Highway	Saturday	17.10.87	0745	1145
8 Pacific Highway	Tuesday	20.10.87		6568
5 Pacific Highway	Wednesday	14.10.87		1688
O Pacific Hwy	Seturday	24.10.87		6488
5 Lindsay Highway	Mondey	12.18.87		2338
• Bruce Highway	Tuesday	13.10.87		2200
5 Bruce Highway	Friday	16.10.87		€415
8 Bruce Highway	Saturday	17.10.87	1888	2200
5 Bruce Highway	Tuesday	13,10.87		1515
9 Bruce Highway	Wednesday	14.10.87		1508
🖲 Great Eastern Highway	Monday/Tuesday	12.10.87		1300
1 Eyre Highwey	Wednesday/Thursday	14,10.87		1009
2 South Coest Highway	Thursday/Friday	15,10.87		1688
3 Albany Highway	Saturday/Sunday	17,10.87		1230
Brand Highway	Tuesday/Wednesday	20,10.87		1000
North west Constal	Friday/Saturday	23,10.87		1188
Sturt Highway	Thursday	15,10.87		8688
1 Port Wakefield Road	Thursday	15,10.87	1880	2200

SECOND AFTER TRUCK SPEED STUDY - TEMPORAL ATTRIBUTES

LOU. ROAD NAME	DAY	DATE STAR	T FINISH
			**
3402 Port Wakefield Road	Saturday	17.10.87 0200	8688
3403 Southeast Highway	Saturday	17.10.87 1980	2300
3404 South East Highway	Tuesday	20,10.87 0200	0600
3405 Sturt Highway	Tuesday	20.10.87 1800	2200
3486 South East Highway	Thursday	22.10.87 1200	1688
3497 Sturt Highway	Saturday	24.10.87 8800	1200
3408 Port Wakefield Road	Tuesday	13.10.87 1400	1800
3501 Midlands Highway	Saturday	17.10.87 1800	2200
3501 Midlanda Highway	Thursday	15.10.87 1400	1800
3501 Midlands Highway	Tuesday	13.10.87 1400	1800
3503 Bass Highway	Saturday	17.10.87 1100	1500
3563 Bass Highway	Thursday	22.10.87 1100	1500
3503 Bass Highway	Tuesday	20.18.87 1800	2299
3601 Majura Road	Tuesday	13,10,87 1800	2200
3601 Mejura Road	Thursday	15.10.87 0700	1100
3601 Majura Road	Saturday	24.10.87 1400	1730
3602 Barton Highway	Tuesday	13.10.87 0650	1050
3602 Barton Highway	Thursday	15.10.87 1750	2150
3682 Barton Highway	Saturday	17,10.87 1350	1730

NUMBER OF RECORDS is 71

.

.

128

Table A8:

SECOND AFTER TRUCK SPEED STUDY - SITE DESCRIPTION

c

	DATE		ROAD NAME	ROAD TYPE
	17/10/87		New England Huy	Highway
	12/19/87		Hume Highway	4 Lane Divided
-	17/10/87		Newcastle Freeway	4 Lane Freeway
	12/10/87		Hume Highway	Huy
	13/10/87		Hume Highway	Hwy
	23/10/87		Newell Highway	Highway
	24/10/87		Newell Highway	Highway
	27/10/87		Hume Highway	4 Lane Divided
3009	28/10/87	Menangle	Hume Highway	4 Lane Divided
	31/10/87		Hume Highway	4 Lane Divided
3011	13/10/87	Goulburn	Hume Highway	6 lane divided
3012	27/10/87	Singleton	New England Highway	2 Lane
3110	29.9.87	Kilmore Victoria	Hume Highway	Freeway
3118	8.18.87	Kilmore Victoria	Hume Highway	Freeway
3110	10.10.87	Kilmore Victoria	Hume Highway	Freeway
3120	22.9.87	Sallan Victoria	Western Highway	Freeway
3120	22.10.87	Ballan Victoria	Western Highway	Freeway
3120	24.10.87	Ballan Victoria	Western Highway	Freeway
3130	8.10.87	Hearnes Oak Victoria	Princes Highway East	Freeway
3130	3.10.87	Hearnes Oak Victoria	Princes Highway East	Freeway
3140	29.9.87	Lara Victoria	Princes Highway	Freeway
3150	1.10.87	Beaufort Victoria	Western Highway	2 lane undivided
3150	29.9 <i>.</i> 87	Beaufort Victoria	Western Highway	2 lane undivided
31:	3.10.87	Beaufort Victoria	Western Highway	2 lane undivided
3160	19.9.87	Balmattum Victoria	Hume Highway	2 lane undivided
	22.9.87	Balmattum Victoria	Hume Highway	2 lane undivided
	17.9.87	Balmattum Victoria	Hume Highway	2 lane undivided
	22.9.87	Glenburn Victoria	Melba Highway	2 lane divided
		Glenburn Victoria	Melba Highway	2 lane undivided
	22.9.87	Muckatah Victoria	Benalla - Tocumwal Road	2 lane divided
		Muckatah Victoria	Benella - Tocumwal Road	2 lane divided
		Long Long Victoria	South Gippsland Highway	2 lane divided
		Lang Lang Victorie	South Gippsland Highway	2 lane divided
		Lang Lang Victoria	South Gippsland Highway	2 lane divided
		Cades County Queensland	Pacific Highway	Freeway
		Shailer Park Queensland	Pacific Highway	Highway
		Pimpama River Queensland	Pacific Highway	Highway Highway
	24.10.87	Queensland	Pacific Hwy Lindsay Highway	UTAHADA
		Caboolture Queensland	Bruce Highway	
		(Beerburrum dev) Queensland	Bruce Highway	
		Hoombye Queensland	Bruce Highway	
		Queensland	Bruce Highway	
		Queensland	Bruce Highway	2 lene
		Western Australia	Great Eastern Highway	2 lane undivided
		Balladonia Western Australia	Eyre Highway	2 lane undivided
		Western Australia	South Comst Highway	2 lane undivided
		Beaufort Western Australia	Albany Highway	2 lane undivided
	-	Dongers Western Australia	Brand Highway	Highway
1		Port Hedland Western Australia		Highway
		Nuriootpa South Australia	Sturt Highway	Highway
		Two Well South Australia	Port Wakefield Road	Highway
		· · · · · · · · · · · · · · · · · · ·		

SECOND AFTER TRUCK SPEED STUDY - SITE DESCRIPTION

= = ·	***======	***************************************	***************************************	***************
LOL	DATE	LOCATION	ROAD NAME	ROAD TYPE
3402		reservations and the straight the south Australia		Highway
3403	17.10.87	Callington South Australia	Southeast Highway	Highway
3404	20.10.87	Callington South Australia	South East Highway	Highway
3485	20.10.87	Nuricotpe South Australia	Sturt Highway	Highway
3406	22.10.87	Callington South Australia	South East Highway	Highway
3487	24.10.87	Nuríootpa South Australia	Sturt Highway	Highway
3408	13.10.87	Two Wells south Australia	Port Wakefield Road	Highway
3501	17.10.87	Mangalore Tasmania	Midlands Highway	Highway
3501	15.10.87	Mangalore Tasmania	Midlands Highway	Highway
3501	13.10.87	Mangalore Tasmania	Nidlands Highway	Highway
3503	17.10.87	Tesmania	Bass Highway	Highwey
3503	22.10.87	Tasmania	Bass Highway	Highway
3503	20.10.87	Tasmania	Bess Highway	Highway
3601	13.10.87	A.C.T.	Majura Road	2 lane undivided
3601	15.10.87	A.C.T.	Majura Road	2 lane undivided
3601	24.10.87	A.C.T.	Majura Road	2 lane undivided
3602	13.10.87	A.C.T.	Barton Highway	á lane divided
3602	15.10.87	A.C.T.	Barton Highway	4 lane divided
3602	17.10.87	A.C.T.	Barton Highway	4 lane divided

٠,

•

NUMBER OF RECORDS is 71

Table A9:

SECOND AFTER TRUCK SPEED STUDY - SITE CHARACTERISTICS

.	***************************************	**********	***********************		**********
	SPEED METER	SPEED LIMIT		WEATHER	VISIBILITY

	KR11 Amphometer 15m spa		Grazing	Fine night	Dark night
	KR11 Amphometer 15m Spa		Grazing	Fine, Overcast, Win	
	Slant Radar	110kmh	Bushland	Overcast, Windy	Clear
	Multiphon (5m spacing)	199kph	Grazing	Fine	Good
	Multiphon (5m spacing)	100kph	Grazing	Fine	Good
	KR11 Amphometer 15m Spa		Farming	Fine	Clear
	KR11 Amphameter	186 kph	Farming	Fine	
	KR11 Amphometer 15m Spa		Grazing	Fine	Clear
	KR11 Amphometer 15m Spe		Grazing	Fine	Clear
	KR11 Amphometer 15m Spa		Grazing	Fine	Clear
	KR11 Amphometer 15m Spa		Grazing	Fine,V Cold	Clear
	Multiphom (5m Specing)	100 kph	Grazing	Fine,Sunny	Clear
	Speed Gun 8	110	Rural	Fine/Rain	6000
	SpeedGun 6	100		Fine	
	Speedgun 6	100		Fine	
	Speed Gun 6	110	Agricultural	Fine	Good
	Speedgun6	100		Fine	Fine
	Speedgun6	110	Agricultural	0'cast	Fair
	Speedgun	100	farm	Good Fine	6000
	Speedgun 6	110	Rurel	Light Fog	Feir
	Speedgun 6	110	Rural/Agriculture	wet	fair
	Speed Gun	100	Farm	Good	Good
	Speedgun	100	0	Light Rein	Good
31	Speedgun 8	199	Rural	Fine	Good
	Speed Gun	100	Rural	Fine	Good
	Speed Gun	100	Rurel	Fine	Good
	Speed Gun Speedgun	190	Rural	Fine O'cast	Good Good
	Speedgun 6	188 188	Rural	Fine	600d
-	Speedgun 8	199	Rurəl Farm	Fine	Excellent
	Speedgun	100	Fara	Good Fine	Good
	Speedgun	100	Rural Farming	Fine	600d
	Speedgun 6	100	Rural	Fine	6000
	Speedgun 6	100	Rural	O'cast and fine	Good
	Redar Hand Gun	100	Rural		
	Radar Speed Gun	109	Residential (no acce	Fine	Good
	Radar Hand Gun	100	Rural	Showers	Clear
3220		100	Residential	Fine	Good
	Rader HandGun(Speedgun)		Rural	Fine some cloud -	• • • -
	Speed Gun	100	Rural	Rein	Good
-	Speed Gun	100	Pine Forrest	Rein	Good
	Radar Speed Gun	100	Small Farms	Fine	Good
	Speed Gun	100	Rural	Fine	Good
	Speed Gun	100	Forrest	Rain	6000
	Digitector-sick l.beams		Native Scrub	Heavy rain- clear	
	Digitector-sick 1/beams		Natural Scrub	Overcast	Good
	Digitector-sick 1/beams		Fare Land	Fine, mild	Good
	Digitector w. light bms		Rural - Grazing		Good
	Digitector-sick 1/beams		Virgin Scrub	Fine	Good
	Digitector-sick 1/beams		Grazing	Fine and hot	Good
	Speedgun	110	Farming	Clear	Fair
3401	Speedgun	110	Farming	Heavy rain and wi	
			- -		

SECOND AFTER TRUCK SPEED STUDY - SITE CHARACTERISTICS

LC SPEED METER	SPEED LI	MIT LAND USE	WEATHER	VISIBILITY
			*************************	**********
3402 Speedgun	110	Farming	Cold wet windy	Poor
3403 Speedgun	110	Farming	Cloudy	Good
3404 Speedgun	110	Farming	Clear (Fog 0500 -	600d
3405 Speedgun	110	Farming	Cloudy	Good
3406 Speedgun	110	Farming	Cloudy	Good
3407 Speedgun	110	Farming	Fine	Very Good
3408 Speedgun	110	Farming	Cloudy fine	Very good
3501 Falcon Speed Gun	110	Grazing	Fine	Good
3501 Falcon Speed Gun	110	Grazing	Fine	Good
3501 Falcon Speed Gun	110	Grazing	Fine	Good
3503 Reder Gun	110	Farming	Rain until 1300	Fair
3503 Radar Gun	110	Farming	Fine	Clear
3503 Radar Gun	110	Farming	Fine	Good
3601 Radar Gun	100	Grazing	Good/fine/dry	Fine/clear
3601 Radar Gun	100	Grazing	Fine	Good
3601 Radar Gun	100	Grazing	Intermittant rain	Good
3602 Radar Gun	100	Rural (E) Residentia	Fine / Dry	Good
3602 Radar Gun	100	Rural (E) Résidentia	Light rain/interm	Good
3602 Radar Gun	100	Rural (E) Residentia	Gen. fine - sligh	Good

NUMBER OF RECORDS is 71

-

•

APPENDIX B - Total & Sample Traffic Volumes Mean free speeds by site Q-flow rates by site

Table B1: TOTAL TRAFFIC VOLUMES observed at study sites by vehicle type, STAGE 1 (Before)

	-										
loc	date	start	finish	Car	artic	truck	bus	cartow	ncyc	1721	tot
1001	251886	200	688	81	36	9	3	1	1	ŀ	130
1002	271086	1300	1500	398	47	27	8	ŧ.	10	73	563
1002	271046	1030	1230	369	84	28	10	1	7	48	542
1000	11186	1045	1245	2441	38	43	6	•	28	43	2599
100	11186	1330	1530	1547	22	30	11	•	22	214	1846
1444	31186	1844	2200	297	253	43	3	E E	3	48	647
1005	41186	14H	1815	741	199	61	26	l l	12	100	1147
1006	71186	1830	2230	211	51	11	7	1	12	1	292
1007	\$1186	100	500	35	61	2	8	1	ł	1	106
1668	111146	1930	2444	356	228	37	18	+	7	+	638
1009	121186	\$	430	83	154	51	1	•		1	289
1414	151186	1930	2400	246	21	24	9	ŧ.	•	ŧ	296
1011	251186	E E	415	32	258	14	8	l l	1	•	313
1012	181186	1030	1430	932	173	141	1	1	15	271	1542
1110	141886	1800	2301	412	441	35	11	E E	1	2	\$92
1110	161086	i i	400	48	85	16		85	1	E E	234
1110	181186	1800	2388	333	484	43	15	5	5	5	810
1110	201186	ŧ.	444	77	79	13	1	Ι	1	1	17
1110	221186	644	1000	1231	44	30	56	6	8	43	1414
112	141086	ŧ	400	52	25	12	+	1	•	1	90
1120	161086	688	1444	531	59	49	15	ŧ	3	32	689
1124	151186	1866	2200	595	15	8	12	2	3	16	651
1120	181186	•	444	69	13	11	2	1	+	•	185
1120	201186	611	1000	612	65	71	5	ł.	l I	36	778
113#	141086	688	1444	1539	75	96	22	1	21	68	1812
1139	161486	1800	2200	1007	43	24	2	l I	13	19	1108
1134	151186	1	411	279	15	8	3	5	2	11	323
1130	181186	500	1000	1926	98	118	22	1	31	72	2267
1130	201186	1800	2288	1066	45	18	ł	45	14	F	1192
1146	211086	1800	2200	1450	97	41	7	•	17	44	1656
1140	251086	•	{ 	328	33	17		1	1	1	385
1140	11186	ŧ.	400	418	12	11	2	•	+	•	443
1140	251186	1800	2200	1745	95	42	5	+	1	10	1867
1150	211086	1888	2200	171	124	18	4	Î	2	14	329
1150	301086	•	444	15	30	13	•	•	+	•	58
1159	141186	ł	444	17	47	7	1	1	1	•	72
115	151186	688	1000	174	30	12	1	1	2	4	224
1150	251186	1800	2244	236	127	14	3	12	ł	15	407
1150	271186	ł	411	14	51	7	2	2	I	2	17
1160	81186	•	544	64	92	11	3	69	ŧ	3	242
1150	81186	500	100	312	126	15	1)	!	4	14	484
1150	121185	•	411	21	211	14	1		ļ	1	248
1160	131186	1800	2200	207	62	17	8		2	16	312
116	291186	566	1999	334	128	19	16	10	5	13	525
1160	21286		400	31	236	20	1	2		5	295
1170	251886		488	22	3	1	Į.			1	27
1176	111186	688	1000	198	17	16	3	4	I	¥	239
1170	131186	1800	2288	228	26	18	4		8	12	296
1176	251186	688	1444	94	43	11	1	3	2	5	159
1170	271186	1400	2200	120	18	10	ļ	5	1	2	155
1180	81186	1744		12	9	2				!	23
1180	111186	1740	2200	124	63	10	*		ļ	4	201
1180	291186	1	488	9	8	•		2	ļ	ļ	19
1180	21286	1800	2200	63	23	6	1		,	•	92 202
1190	221186	1866	2244	728	5	11	3	8	6	32	793

1190	251186	688	1000	651	44	46	5	8	6	37	791
1194	271146	1	444	25	11	12	ŧ	ŧ.	1	ł.	48
1205	61286	145	1145	3425	92	177	53		32	212	4391
1210	91286	100	544	168	41	3#	l l	•	- 4	15	257
1215	31246	120	1644	2817	267	273	41	ŧ.	29	221	3588
1220	61286	l l	444	153	17	12	ŧ	•	1	12	195
1225	81286	1934	2334	144	16	11	1	ł.	5	14	191
1230	281886	1100	2288	624	76	45	9	ŧ.	9	l l	757
1235	311085	45	445	53	31	16	l l	l l	1	•	1\$1
1240	11116	1899	2200	870	11	21	9	l I	6	•	931
1245	41146	1115	1515	1054	96	103	6	ł.	9	l l	1268
1259	51186	1144	1544	194	199	125	12	•	1	•	1147
1300	131466	1344	1300	344	161	40	12	•	9	19	585
1341	151086	1888	1999	134	134	12	15		7	•	311
1302	161086	1500	1600	163	33	13	1	•	2	14	232
1303	1\$1\$\$6	123	1230	501	43	1	f	1	1	3	556
13#4	211086	955	955	528	206	61	13	ŧ.	2	21	831
1305	261986	1400	1400	41	14	6	ŧ.	ŧ	1	+	61
1346	241986	1144	1100	178	21	4	9	l l	1	1	223
1400	161886	200	641	26	46	11	1	1	ł.	ŧ	84
1401	161686	1888	2244	764	182	29	9	- F	4	ŧ.	848
1402	181886	200	611	12	29	11	4	l F	4	E F	136
1403	181886	1999	2388	419	28	1	9	1	+	l l	524
1404	281886	200	688	199	176	24	5	•	2	l i i	316
1405	281886	1800	2200	146	56	19	3	l I	5	1	269
1446	301086	1244	1600	959	205	144	2	ŧ.	12	t i	1293
1407	11186	200	1200	64	41	1	19	E E	3	l l	713
1494	41186	1499	1800	\$69	112	78	9	•	11	1	1010
1501	281486	1499	1100	1	•	ŧ	•	•	l l	ŧ.	l l
1501	111#6	18##	2288	1		•	1	•	•	•	•
1503	231006	1225	1625	1		l l	1	•	•	•	•
1503	281985	1800	2288	ŧ.	1	•	1	1	•	4	4
15#3	61186	1 ##	1499	1	1	•			ŧ	•	•
1601	281685	788	1100	333	46	67	5	•	4	9	464
1641	111146	1884	2288	51	26	1	3	1	1	\$	95
1601	1311#6	1400	1444	155	22	22	8	6	1	5	218
1682	301046	1400	1800	711	14	67	15	17	1	55	886
1602	11116	700	1#55	964	21	71	5	37	20	56	1174
1692	281086	1816	2210	364	6	16	1	4	3	13	403

loc	date	start	finisk	car	artic	truck	paa	cartow	RCYC	1741	tot
2001	288387	145	545	54	40	9	4	2	1	1	111
2002	300387	1198	1549	1397	334	117	23	68	22	231	2192
2003	284387	1015	1430	4169	62	98	12	135	51	534	5061
2004	300387	1886	2290	264	386	17	1	ł	1	23	788
2005	31#387	1345	1745	471	188	5#	10	22	3	96	141
2006	38487	144	544	31	61	4	13	3	1	1	112
2887	4#487	1830	2230	184	45	8	3	11	2	4	257
2008	68487	1930	2400	311	234	49	8	10	5	9	626
2009	78487	1	420	92	108	41	1	1	1	1	242
2010	48417	1931	2488	425	51	24	23	19	3	59	614
2011	31#387	1	415	25	237	В	9	1	1		285
2012	70487	1#3#	1430	1155	183	121	10	22	17	216	1724
2110	140387	688	1000	964	59	35	30	75	9	44	1218
2110	170387	1886	2230	384	437	45	1	5	6	3	890
2110	190387	ł	411	52	95	16	1	4	1		168
2120	190387	600	1666	581	57	38	8	19	5	36	744
2120	48487	18##	2200	659	7	5	6	23	3	12	715
2120	170387	ŧ	400	27	25	5	ł	i	ŀ	ŀ	57
2130	17#3#7	611	1000	2091	122	11	35	48	38	100	2544
213	198387	1800	2200	1052	58	19	1	21	13	33	1197
2130	49417	ł	411	189	1	9	3	6	1	5	228
2144	310347	1800	2200	1538	100	45	9	34	17	62	1805
2150	280387	686	1666	156	7	5	2	12	1	9	192
2150	310387	1800	2210	121	125	9	2	1	2	7	276
2150	20487	ļ	411	14	46	6	1	1			68
216	280387		500	65	107	14	4	3	ł		193
2160	288387	500	1666	489	128	13	16	36	2	21	625
2150	310387	•	499	21	233	31	1	4	ł	1	291
2160	20487	1886	2200	226	84	7	5	13	3	12	351
217	264387	1100	2200	109	35	11		9	1	1	166
2170	240317	(1)	1000	199	11	14	4	14	1	8	251
216	210387	+	400	29	18	•	I	2		2 5	52
2180	240387	1888	2268	117	66	1	ł	9	1	5 25	207
2194	240387	6 90	1000	636	37	35	8	22			770
2190 2190	210387 260387	1800	22 88 4 80	679 25	1 13	3 15	21 2	25		13 3	742 59
2245	21038T	745	1145	23 3739	62	138	56	1 \$5	48	284	4332
2210	240387	199	500	11	24	22	30 1	33 5	*0 4	13	179
2215	10487	1200	1600	2657	201	272	3	41	24	195	3420
2224	49487	1 1	400	164	5	8	1	1	3	9	191
2225	279417	1930	2330	172	16	6	l l	2	1	5	202
223	314387	1100	2200	668	55	46	;	15	15		617
2235	34417	15	415	44	41	14	i	3	13		102
2248	80487	1888	2200	968	13	12	1	21	16		1040
2245	310387	1045	1445	1037	78	115	1	35	3		1281
2254	10487	1199	1544	878	68	87	'n	43	11		1494
2388	344387	1200	1200	336	188	45	11	40	11	24	655
2301	16487	744	788	143	128	4	4	35		11	331
2342	28487	1499	1499	176	101	13	3	24	5	5	327
2343	48487	1000	1666	509	27	22	j	34	í	7	688
2384	68487	1035	1030	595	140	59	í	1	11	8	897
23#5	99417	886	844	201	42	1	9	19	3	1	282
2346	110487	944	944	63	19	1	1	10	i	i	100
2488	264347	288	644	18	58	, 5	1	1	i	1	84
2401	268317	1844	2244	760	101	31	1	45	11	3	962
		288	688	184		74	**		**	•	

Table 32: TOTAL TRAFFIC TOLOURS observed at study sites by vehicle type, STACE 2 (1st after)

.

2443	288387	1900	2388	424	23	+	9	33	1	1	498
2484	310387	200	688	45	153	14	3	1	ŧ	1	222
2445	310387	1100	2200	197	64	16	4	11	2	•	295
2446	20487	1200	1600	343	140	111	7	46	6	4	1223
2417	48487	188	1200	762	41	23	16	#4	4	1	877
2488	70487	1400	1866	1071	127	73	11	78	11	6	1376
2501	31#387	1400	1898	•	ŧ.	1	1	1	ŧ.		
2501	110487	1800	2200	•		ŧ	ŧ	•	•		1
2503	20487	1031	1431	574	46	66	3	16	4	27	736
2513	310317	1100	2288	267	19	11	1	5	1	8	312
2641	240387	1486	1800	183	37	32	5	6	7		276
2601	20487	1800	2288	67	11	ŧ		3	İ	j	93
2641	284387	788	1144	15	9	14	•	1	1	•	191
2642	318387	1888	2288	333	12	21	•	3	8	11	388
2642	260387	1400	1844	718	22	57	15	24	15	68	919
2682	240387	700	1100	2842	45	95	12	13	44	69	2326

Table B3:	TOTAL THAP	FIC TOLUNES	observed	at study	sites by re	ehicle type	, STAGE 3	{2nd liter	1		
loc	date	start	finish	car	artic	truck	bes	cartow	ncyc	lvan	tot
3##1	171087	200	i #	\$1	71	13	4	1	1	ŧ	170
3002	121#87	1145	1615	799	142	63	18	32	13	150	1217
3883	171087	113	1715	5228	47	137	19	178	58	589	6167
3004	121087	1888	2244	246	417	33	2	5	7	19	729
3885	131687	1466	1300	484	194	46	11	17	5	93	176
3005	231487	1830	2230	288	41	2	4	6	4	+	257
3887	241887	166	566	49	75	1	10	5	1	+	144
3998	271487	1829	2400	397	248	38	7	j	3	1	788
3889	281187	ł	430	17	186	54	2	2	I		322
3414	311487	1930	2400	249	33	13	13	13	5	21	347
3011	131087	1	415	19	253	15	7	1	i i	•	294
3\$12	271087	1030	1454	996	213	131	3	14	15	264	1636
3110	298987	1888	233	481	437	38	13	24	4	42	1038
311	81087	1	488	56	82	12	1	3	6	3	163
311	101087	611	1000	1331	57	30	26	102	21	38	1685
312	241087	1800	2280	636	11	11	12	24	4	23	721
3124	221487	688	1444	584	82	49	8.	11	1	25	762
3120	220987	1	414	36	28	11	F	3	•	3	80
3130	81087	1888	2288	1216	56	12	ŧ	1#	2	9	1299
3130	31087	1	111	193	15	6	E.	2	ŧ	1	228
3140	291987	1880	2288	1476	76	44	5	27	9	71	1698
3150	11987	1	{ 	36	64	5	1	4	ŧ	2	111
3150	290987	1800	2288	148	189	7	1	6	3	3	276
3150	31087	688	1000	242	23	6	2	29	5	10	319
3160	190987	600	1000	524	72	17	?	26	2	19	667
3160	220987	1	444	27	172	18	•	1		3	220
3160	170987	1800	2200	302	76	15	6	19	1	12	430
3170	221087	1800	2200	133	25	10	1	2	2	4	177
3170	220987	688	1444	262	15	13	1	19	F	47	357
3180	228987	1894	2200	103	42	4	1	8	ŧ	4	161
3180	31087	1	411	28	19	1	1	ł	ł	ł	39
3190	101087	1800	2200	673	2	1	8	28	2	18	738
3190	11987	1		12	5	7	1	1	ł	3	28
3190	290987	600	1000	628	48	42	2	39	8	123	890
3205	171487	745	2345	3861	72	149	72	89	51	194	4488
3210	201087	100	500	130	, , , ,	3	ł	22	41	12	217
3215	141087	1200	1600	2794	151	252	42	65	10	1	3315
322	241687	•	400	139	18	1	1	5	2	1	179
3225	121087	1930	2330	143	17	3	•	3	3	4	173
323 8 3235	131 88 7 161 88 7	18 88 15	2266 415	544 62	101 37	35 8	8	1\$	4		762
3240		1880	2266	861	12	a 1 <u>9</u>	2 12	2 16	17		111 937
3245	131087	1115	1515	1285	97	125	1#	58	1,		1582
3250	141087	1100	1511	1048	81	89	9	22	5	ł	1253
3344	121487	1386	1344	4#5	269	63	17	57	19	21	851
3301	141087	1000	1888	165	152	16	יי	38	6	7	391
3302	151487	1600	1644	171	50	12	5	48	Š	16	301
3343	171087	1230	1230	659	97	25	6	54	1	6	848
3344	201087	1000	1000	498	167	60	11	84	5	21	846
3345	231487	1144	1100	184	- 40	15	1	33	i	8	294
3499	151087	200	640	27	49	8	1	4	ŀ	2	
3401	151087	1466	2200	573	84	39	11	36	6	13	761
3402	171087	200	684	88	30	10	2	19	i	1	141
3403	171087	1944	2344	427	35	9	,	29	5	14	528
3464	201987	200	610	52	144	25	3	5	1	1	276
3405	201087	1800	2244	102	31	3	2	4	Ĵ	3	154

3446	221887	1266	1666	863	151	88	15	51	5	18	1191
3447	241987	888	1244	665	23	13	22	77	7	13	120
3448	131087	1400	1866	1291	139	93	8	187	12	45	1775
3501	171087	1888	2288	133	•	3	ŧ.	1	l I	•	137
3501	151487	1400	1866	248	17	10	1	3	ŧ	4	286
35#1	131087	1400	1890	332	26	15	8	2	2	2	387
35#3	171487	1100	1500	372	17	16	4	17	1	23	458
3503	221087	1100	1500	327	51	4	3	16	1	24	470
3503	201087	1884	2200	213	15	19	2	5	ŧ.	1	265
3601	241887	1400	173	196	2	6	4	5	1	4	218
3601	151487	766	1100	362	39	43	1	3	3	19	476
3601	131017	1800	2200	59	15	12	1	1	ŧ	2	89
3602	171087	135	1730	987	5		9	26	6	54	1411
3602	131087	650	1858	1539	51	71	16	7	29	120	1832
36#2	151487	175	215	368	17	13	2	5	2	F	399

INDIC PT		110 10000		••••••		<u> </u>		()0010101			
lac	date	start	finish	car	artic	track	bus	cartom	ncyc	lvan	tot
1001	251#86	288	611	42	23	1	1	2	ł	6	81
1002	271886	1344	1500	263	37	19	8	12	7	- 44	390
1662	271486	1030	1230	187	46	1≨	7	7	3	34	300
1003	11186	1645	1245	485	28	25	1	24	12	54	625
1003	11186	1330	1530	457	9	15	4	20	1	62	575
1004	31186	1800	2200	199	110	26	1	1	1	25	432
1665	41186	1444	1815	299	93	29	17	1	1	39	466
1006	71186	1830	2230	139	42	9	7	7	3	13	220
1007	\$1186	144	500	29	56	2	8	2	+	•	97
1008	111186	1930	2400	193	127	20	6	3	5	11	365
1##9	121186	•	430	78	137	41	1	1	ŧ.	•	258
1010	151186	1930	2400	195	22	15	8	8	1	1	257
1011	251186	•	415	26	179	•	8	2	1	l l	225
1112	181186	1030	1430	276	84	64	3	12	6	98	543
1110	141986	1800	2301	1#5	318	26	8	6	ţ.	1	463
111	161086	•	400	33	85	14	1	2	1	•	135
111	181186	1800	2344	53	384	36	11	5	3	1	412
1111	1186	1	400	49	77	9	ŧ	1	ł	ŧ.	127
1114	1146	688	1000	64	36	26	38	6	ł	11	180
1121	1986	•	499	17	19	1	ŧ	ţ.	ł	ŧ	- 44
112	1986	688	1444	107	57	42	11	8	l l	15	239
112	1186	1800	2200	11	14	8	12	2	1	ŧ	114
1128	1186	ŧ	411	15	23	11	2	ł	E E	l l	51
1120	1186	500	1000	67	56	63	5	l l	ł	6	197
1130	1086	688	1000	93	61	77	13	ł	F	1	245
1130	1086	1800	2200	189	36	16	2	ł	1	Î	243
1130	1186	1	444	24	11	6	3	5	F	3	51
113	1144	688	1000	64	86	74	13	1	ł.	l l	238
1130	1146	1866	2244	35	45	17	2	F	1	ł.	99
1148	1986	1114	2200	153	91	30	5	ł.	ł	ŧ.	279
1140	1086	F	444	46	29	17	4	1	1	1	97
1140	146	1	411	30	12	11	2	F	1	ł	55
114	1186	1880	2200	26	88	37	5	1	•	I	156
1150	1446	18##	2200	11	106	14	1	1	1	4	166
115	1886	1	(11	7	31	13	1	1	•	1	50
1150	1186	1	444	13		6	1	•	1	1	64
115	1186	600	1000	31	29	11	•	4	•	1	75
1150	25118 6	1100	2200	36	91	10	3	12	•	3	154
1150	271186	•	400	15	49	4	2	1	+	ŧ	72
116	\$1185	•	500	14	69	8	2	2	•	•	95
1154	81186	588	1000	51	101	12	11	5	I I	2	182
1164	121186	ŧ	488	9	116	7	1	1	1	1	134
1160	131186	1866	2200	38	53	14	8	3	E E	2	118
1160	291186	500	1000	55	77	17	10	11	1	16	146
1164	21286	I	4##	17	131	14	1	2	1	5	170
1170	251086	ł	444	28	3	1	1	3	1	1	28
1170	111186	688	1000	55	15	15	3	4	•	I I	92
1174	131186	18##	2244	25	27	12	4	4	1	2	74
1170	251186	588	1000	37	38	8	1	3	•	2	89
1170	271186	1844	2200	26	18	7	ŧ	5	Ŷ.	1	57
1188	81186	1	400	1	\$	2	ŧ	+	ŧ	ŧ	17
1130	111186	1740	2200	33	57	,	1	1	•	4	144
1111	291186	1	400	9	\$	ŧ	¢	2	ŧ	ŧ	19
1180	21286	1884	2240	14	22	5	•	ŧ	ŧ	•	41
1191	221186	1890	2200	75	4	11	3	8	4	5	11
1190	251186	688	1000	61	43	36	5	1	3	11	174

Table B4: SAMPLE TRAFFIC FOLUMES observed at study sites by vehicle type, STAGE 1 (Before)

1190	271186	ŧ	40	20	10	12	ł	ţ	1	2	44
1245	61286	745	1145	1477	\$2	116	32	64	,	101	1881
1210	91286	100	544	164	41	24	•	5	4		255
1215	31286	1200	1600	1912	182	227	32	47	26	144	2570
1220	61286	l l	444	125	15	12	ŧ.	4	1	10	167
1225	81286	1930	233	130	14	1	1	ŧ.	4	12	169
1230	281086	1800	2200	307	"	4	6	6	<u> </u>	1	436
1235	311086	45	445	53	31	14	1	3	1	1	192
1246	11186	1844	2244	349	16	12	8	12	6	•	403
1245	41186	1115	1515	1\$3	52	54	7	16	4	1	316
1250	51186	11##	1500	143	34	61	1	5	2	•	251
1300	131086	1344	1344	344	161	41	12	51	1	11	636
1301	151086	1444	1000	134	135	12	14	43	7	8	353
1392	161086	1600	1644	162	34	13	1	51	2	13	282
1303	181886	123	1230	544	11	9		32	ŧ	3	588
1344	211486	955	955	528	205	6	11	68	2	21	892
1305	261486	1400	1400	178	21	4	9	23	1	1₽	246
1306	241086	1144	1100	41	14	6		4	ł	ŧ.	65
1400	161886	200	61 1	22	43	11	•	1	ł.	l l	76
1401	161086	1800	2266	473	94	24	8	1	ł	1	599
14#2	181086	200	611	76	27	1	5	1	ŧ.	ł	118
1403	181686	1900	2388	355	28	۶.	,	E E	ł	1	394
14#4	281486	200	614	71	124	11	3	•	J.	ł.	249
1405	281486	1860	2244	16	55	16	3	1	+	1	234
1406	301086	1200	1600	574	176	73	9	•	ļ	•	826
1407	11186	101	1200	466	36	10	15	•	ŧ	•	527
1468	41186	1400	1800	638	144	66	9			ł.	\$17
1501	281086	1499	1800	ł	1	41	5			+	56
1501	11186	1800	2200		10	17	3			•	31
15#3	231886	1225	1625	ļ	55	53	Į.		1	ł.	188
1503	281886	1200	2200		13	11	1	•			31
1503	61186	1000	1400		54	50	•				184
1611	281086	700	1100	198	31	50	3	4	2	6	293
1601	111186	1800	2284	51	25	9	3	1		1	92
16#1	131186	1400	1460	143	22	24	1	•	. !	5	243
1602	301046	1400	1800	617	12	11	14	16	1	51	457
16#2	111#6	766	1055	852	19	61	6	37	15	56	1053
1682 -	2\$1\$\$6	1810	2210	345	6	16	1	4	3	12	387

...

TADLE DO	: <u>SARPES TRAP</u>	FIC TOPOL	IPS ODBELAEN	at study	SILES DY	TERICIE LYP	6' 91 4 47	4 (131 ALLS	<u>'[]</u>		
loc	date	start	finish	car	artic	track	bus	cartow	B CYC	lta	tot
2001	280387	145	545	47	38	9	4	2	1	1	101
2002	300387	1100	1540	385	1##	36	11	21	5	77	635
2003	280387	1015	1430	661	13	21	2	7	13	74	791
2004	300387	1100	2200	111	288	9	1	3	ŧ.	1	332
2005	310387	1345	1745	226	102	25	9	7	2	46	417
2886	30487	100	544	28	52	3	13	3	ŧ.	1	100
2007	48487	183	2230	162	38	7	2	1	1	4	224
2008	68417	1930	2409	284	128	34	4	5	5	13	393
2009	79487	•	428	79	92	35	•	•	1	5	212
2010	49487	1939	2400	187	18	8	7	•	3	22	245
2011	310387	•	415	22	176	1	8	1	Į,	3	214
2012	74481	1434	1439	384	72	58	6	1	9	94	550
2110	140387	684	1000	111	51	30	28	0	₽ 1	3	218
211	176387	1800	2230	36	311 78	29	11	1	4	4	393 1.6.0
2110	199387	5 A A	400	15 69	7a 50	13 37	•	•	1	• б	1 06 177
2126	190387 40487	500	1 999 2200	51	2∎ 7	5	8 6	0	1	9 9	82
2120 2120	170387	1899	489	51 10	21	5	0			,	04 36
2130	170387	500	1000	241	136	78	22	9	5	1	458
2134	190387	1800	2200	1	110	70 	11	,	,	4	1
2130	40487	1044	400	25	6	9	3	5	r 1	4	52
2146	310387	1100	2296	31	84	42	8	, ,	2	5	176
2150	280387	600	1990	15	7	5	3	7	1	1	45
2150	31#387	1800	2210	35	98	7	i	5	1	j	158
2150	20487	4	40	1	35		1	í	I	, i	50
2164	280387	i	500	31	97	11	4	i	i	, i	143
2160	280387	560	1000	29	96	14	13	13	2	8	171
2161	318387	•	400	13	154	13	1		Ī	ŀ	181
2160	28487	1800	2200	17	57	6	3	2	ŀ	3	88
2170	26#387	1888	2200	11	25	15	j	1	i i	Ì	52
2170	240387	644	1444	99	11	14	3	11	1	4	133
2180	210387	E E	400	27	17			1	1	2	47
2180	246387	1800	2200	33	47	8	1	3	F.	1	92
2190 -	244387	688	1444	44	42	33	6	4	1	7	132
219	210387	1800	2200	48	1	3	18	6	•	5	81
2190	26#387	F	466	- 14	14	14	2	1	•	2	47
2205	21#387	745	1145	1464	- 44	106	35	58	9	104	1820
2210	240387	166	511	105	22	22	1	6	2	13	171
2215	1#487	1200	1688	1557	155	191	29	27	1	109	2078
2220	48487	1034	(88	131	4	6	1	1	3	9	155
2225	278487	1934	233	151	15	6	ŧ	2	1	5	180
2230	310387 30487	18 98 15	2200	266	59	37	?	11	11		391
2235 2246	34487	15	415 2200	47 329	38 11	11 9	₿ 9	3	11		99 184
2245	314387	1045	1445	208	35	55	3	13 8	13 2		384 311
2250	88487	1100	1500	344	41	59	4	24	6	i	478
2300	300387	1200	1200	334	189	46	11	44	11	24	655
2301	10487	700	744	144	137	3	4	35	6	11	331
2302	20487	1400	1400	176	101	13	3	24	5	5	327
23#3	48487	1000	1000	506	26	23	3	37	6	1	688
2384	68487	1030	1030	594	141	59	í	70	11	8	887
2305	98487	888	888	288	43	7	9	19	3	1	282
2306	110487	566	900	63	19	, 7	1	10	i		144
2444	268387	266	688	17	56	5	1	I	i	1	81
24#1	26#387	1866	2244	577	98	27	1	39	ii	3	765
2482	284387	288	611	96	29	4	2	12		i	143
-						-	-		•	•	

Table B5: SAMPLE TRAFFIC TOBUTES observed at study sites by vehicle type, STAGE 2 (1st After)

24#3	286387	1998	2300	357	21	,	,	20	1	1	417
2484	314387	200	600	34	124	11	2	2	1	ŧ	169
2445	31#3#7	1800	2200	162	64	16	4	12	2	1	256
2486	20487	1200	1600	498	125	94	7	35	3	4	766
2467	46487	100	1200	466	42	20	14	71	3	7	623
2488	79487	1444	1200	585	115	58	1	56	7	3	133
2541	310387	1400	1888	183	19	38	4	17	•	4	252
2501	11#4#7	1100	2200	189	5	13	7	5	1	2	222
2543	20487	1031	1431	378	31	46	2	11	2	23	500
25#3	31#3#7	1100	2200	214	1	10	1	4	1	5	253
2611	240387	1400	1866	129	21	31	4	3	4	11	210
2681	20487	1800	2200	62	14	8	1	3	1	5	93
2601	220327	766	1100	136	9	13	•	11	1	7	177
2612	31\$387	1800	2200	334	12	21	•	2	8	10	387
2642	260387	1400	1100	645	22	53	15	19	11	51	416
2642	249387	700	1100	748	28	56	6	11	14	57	986

·.

IENTE DA	· AVIING ITT	<u></u>	THE OPPETICE	et staty	11103 01	tentere clb	16, UILON	<u>A 3460 8110</u>	<u>.</u>		
loc	date	start	finish	282	artic	truck	bus	cartow	B C Y C	ltan	tot
3001	171487	288	688	67	53	10	3			•	133
3882	121087	1145	1615	367	79	23	8	9	7	61	554
3003	171487	1134	1715	595	19	38	2	24	4	1#3	785
3004	121087	1300	2200	138	223	21	1	2	6	1	398
3665	131047	1400	1844	265	115	32	;	8	3	43	473
3006	231087	1\$3\$	2230	138	35	2	, 3	i	1	2	185
3007	241047	100	588	45	68	3	9		i		129
3000	271487	1829	2488	242	153	26	6	3	1	1	438
3007	281887	1015	430	66	137	42	1	2	i	1	251
3414	311487	1930	2444	204	26	13	13	9	i.	12	281
3011	131087	1	415	15	168	10	6	í		2	201
3012	271887	1630	1450	212	65	45	2	2	i	52	382
3110	294987	1844	2334	27	311	29	12	6	t	4	390
3114	\$19\$7	10.0	444	15	79	1	1		i	i	103
3110	1#1#87	644	1666	58	62	33	34	30	4	29	255
312	241987	1144	2288	52	11	11	12	16		1	110
3120	221987	644	1444	57	84	49	9	14		16	225
3120	226987	1	- 444	19	25	10		3		3	60
3130	81887	1844	2286	80	45	11		3	• t	3	143
3130	31087	1000	444	58	15	6		2		5	16
3140	298987	1800	2288	32	75	35	, i	9		14	169
3150	11##7	•	400	22	54	3		1			88
3150	299987	1111	2288	42	100	5		2	1	1	151
3150	31087	500	1999	40	21	8	2	13	2		91
316	194987	684	1444	61	58	12	- 5	4	i	i	140
3160	220987		400	17	152	14	i	i	ĺ	1	185
3160	170987	1800	2244	38	63	11	6	7	ŧ	2	127
3170	221087	1100	2200	39	23	8	1	1	i	2	73
3170	220987	600	1000	39	14	12	1	11	t	17	94
3180	226987	1888	2200	45	37	5		3	F	3	93
3184	31017	•	400	26	9	1	1	ł	ł	E E	36
3190	101087	1866	2288	66	1	7	6	5	1	3	98
3190	11017	•	400	12	5	7	E E	1	1	2	27
3190	29#987	644	1666	65	46	35	2	3	1	5	156
3205	171017	745	2345	1765	56	88	56	50	21	82	2121
321	201087	100	588	118	43	26	•	8	3	12	210
3215	141487	1200	16##	1458	136	160	39	30	7	120	1950
322	241987	1	400	141	18	7	1	5	2	1	181
3225	121987	1930	2338	124	17	4	•	3	3	4	155
3230	131087	1800	2200	253	76	26	\$	13	4	l l	310
3235	161487	15	415	62	36	9	2	3	1	1	112
3240	171017	1800	2200	266	12	17	10	5	14	ł	324
3245	131087	1115	1515	340	42	51	4	21	2	1	461
3254	141687	1144	1500	354	44	58	7	15	1		481
3300	121087	1300	1300	405	269	63	17	57	19	21	\$51
3301	141087	1000	1000	165	152	16	1	38	6	7	391
3302	151687	1600	1600	171	50	12	5	48	5	11	301
3303	171007	1236	1230	659	97	25	6	54	1	6	848
3304	201087	1000	1000	498	167	60	11	84	5	21	846
3385	231887	11##	11##	184	40	15	1	33	4	\$	294
3499	151087	211	688	24	47	8	1	4		2	85
34#1 24#2	151#87	1860	2288	417	79 14	28	7	33	3	1	577
3482	171887	248	5 64	85	31	9	2	\$ 16	4	1	135
34 8 3 34 84	171087	1 960 244	2300	327	33 158	6 11	9 1	29	4	13	421
34#5	201087 201087	200	6 88 27 4 4	41	158 45	21 17	3	5 9	5	1 5	228
1483	4 414 0 j	1100	2200	162	40	τı.	•	3	3	3	247

Table B6: SAMPLE TRAFFIC TOLORES observed at study sites by vehicle type, STAGE 2 (2nd liter)

3406	221017	1200	1600	475	128	64	14	33	2	12	728
3407	241087	111	1200	442	20	10	17	57	6	8	560
3488	131087	1400	1844	644	121	77	6	116	9	25	998
3501	1718#7	1466	2286	133	E E	3	•	1	ŧ.	•	137
3501	151087	1400	1844	248	17	10	4	3	1	4	286
3591	131447	1444	18##	332	26	15	t	2	2	2	347
3503	171417	1100	1500	372	17	16	4	17	1	23	450
3503	221687	1144	1500	327	51	48	3	16	1	24	476
35#3	201017	1800	2244	213	16	19	2	5	ŧ.	10	265
3601	241487	1466	1730	196	3	6	3	5	1	4	218
3601	151087	788	11#	229	32	36	1	3	2	21	324
3601	131687	1844	2200	52	14	16	ŧ.	1	•	2	79
3682	171487	1350	173	763	9	3	9	28	4	28	842
3602	131087	650	1050	783	37	54	9	10	20	61	973
3682	151487	1750	215	346	17	8	2	2	2	3	381

Table B7: <u>IEAF FREE SPEEDS based on sampled vehicles, observed at study sites by vehicle type,</u> <u>STAGE 1 (Before)</u>

loc	date	start	finisk	CET	artic	track	bus	cartow	ncyc	lvan	tot
1991	251086	288	688	113	103	102	98	86	ł	88	161
1662	271486	1300	1500	144	88	\$6	102	100	111	96	144
1002	271086	1030	123	1#5	94	89	99	87	109	98	161
1003	11186	1045	1245	112	101		99	99	119	105	11
1003	11146	1330	153	113	96	91	92	94	11	95	102
1004	31186	1800	2200	-144	97	92	87	99	1	92	100
1005	41186	1444	1815	115	96	89	98	1	113	97	101
1006	71186	1838	223	144	96	82	100	107	119	94	111
1007	81186	100	588	116	164	10	107	92	1	ŧ	194
1008	111186	1930	2441	117	94	95	101	93	11	98	102
1009	121186	ł	431	111	97	90	90	81			99
1010	151186	1930	2488	111	88	94	111	88	- 53	93	99
1011	251186	•	415	142	1\$5	96	108	103	111	•	145
1012	181186	1030	1430	95	89	82	93	82	1#3	89	91 00
1110	141086	1899	2301	101	85		87	99 • T		1	89 96
111	161 086 181186	•	499	103 108	92 88	1♥I 86	86 91	87 1 14	111	111	20 91
1110 1110	201186	1800	2388 489	106		00 100		111	111	111	96
	221186	611	1444	144		88	88	93	i	93	93
1120	141486	••••	404	104	82	94	•••	,,,	i		93
1120	161086	611	166	111	83	86	- 11	91	i	95	93
1129	151186	1844	2201	118	91	96	94	99	158	Ĩ	114
1124	181186	1	411	111	93	97	\$5				99
1120	201186	688	1000	112	87	86	81	i i	Í	95	92
1134	141086	644	1000	95		86	82	1	, į	91	88
1130	161#86	1800	2266	96	84	98	91			4	94
1136	151186	+	400	99	85	87	82	92	1	96	93
113	181186	644	1000	95	87	88	86	95	•	•	89
113	201186	1800	2200	98	85	85	- 10		1	1	91
1140	211086	1800	2268	103	89	91	92	•	Ŧ	•	97
1140	251086	•	400	99	87	93	- 14	83	1	•	94
1140	11186	ŧ	466	142	82	91	89	•	•	•	95
1140	251186	1500	2200	102		89	88	1			9
1150	211486	1844	2200	100	81	84	1		81	161	85
1150	301086	1	400	99			1	1	1		98
1150	141186)	499	105		11	111	•)	96
1150 1150	151186 251186	688	1000	100 103	91 84	85 83	1 92	98 90	- 1	81 97	94 89
1150	271186	1800 0	2200 400	195	83	85 85	111	11	i	21	89 89
1160	\$1186	i	500	103		89	82	95	i	i	, 91
1160	81186	544	1000	111	87	91	89	93	1	146	92
1160	121186	1	400	114		88	88	1	i	83	85
1160	131186	1800	2244	98		84	87	11	İ	88	89
1160	291186	500	1000	105		89	86	96	126	105	93
1160	21286	ſ	(66	111	66	94	78	161	ŧ	97	88
1170	251986	1	400	87	99	105	1	91	1	75	89
1170	111186	688	1000	116	86	92	85	93	ł	1	99
1170	131146	1800	2200	144	87	85	88	95	1	101	93
1170	251186	688	1868	91	88	78	- 41	91	ŧ	68	87
1170	271186	1844	2200	111	86	92	1	88	1	85	94
1180	81186	ł	488	117	111	95	ŧ	E F	ł	÷	103
1110	111186	1744	2266	1#3	84	78	ł	114	ļ	112	91
1188	291186	ł	411	95	92	•	ł	96	ł	ŧ	94
1180	21286	1888	2211	112	91	79	ŧ.	ł	ł	1	93
1190	221186	1844	2200	117	94	88	88	99	103	98	103

1190	251186	iH	1###	103	92	84	91	94	113	97	95
119	271186		400	105	- 89	- 38	ŧ	1	•	#	55
1205	61286	745	1145	- 94	93	- 11	- 94	85	91	19	93
1210	31286	100	500	5 9	95	93	1	\$3	188	91	97
1215	31286	1200	1600	- 91	89	87	95	86	95	93	35
1220	61286	ŧ	400	93	87	\$5	ł	92	. 91	91	92
1225	\$12\$5	1930	2330	96	- 89	- 94	93		102	93	95
1230	281886	1800	2284	100	91	91	97	98	149	F	98
1235	311086	45	445	117	94	97	ł	114	96	1	144
124	11186	1866	2200	92	86	91	94	79	87	1	91
1245	41186	1115	1515	91	- #4	- 84	15	- 14		1	87
1250	51186	1144	1500	98	88	85	45	16	- 14		\$8
1344	131486	1344	1300	168	99	94	103	50	113	98	103
1301	151886	1 08	1444	116	103	100	108	98	105	95	102
1302	161886	1600	1688	145	92	87	97	86	123	- 94	98
1313	181986	1234	123	116	90	88	ŧ	92	1	86	184
1344	211886	955	955	144	95	96	98	91	168	97	103
1315	261886	1400	1400	103	- 58	88	113	- 98	112	92	10
1366	241486	1100	1166	117	99	87	1	99	ŧ.	ŧ	1#3
14#	161486	200	600	114	\$3	95	1	•	•	1	\$2
1441	161485	1844	2269	144	\$5	16	- 54		1	•	1#
1402	1\$1\$\$6	200	666	1#5	92	89	1#3	•	ł.	ł	100
1493	181886	1900	2300	114	92	87	93		ŧ.	•	102
1444	241446	288	688	11	88	9	91	1	- F	ł	95
145	281886	1100	2266	1##	\$5	81	145	•	1	1	96
1406	301086	1244	1600	144	86	87	88	•	1	1	98
1447	11116	888	1200	99	85	82	93	•	ŧ.	ŧ	98
14#8	41186	1466	1888	101	88	84	93	1	- F	1	98
1501	281886	14##	1166	•	81	79	75	ŧ.	1	ŧ	79
1501	11145	1800	2200	•	- 16	\$1	88	•	1	1	\$7
1513	231486	1225	1625	1	86	16	1	1	1	1	86
1503	281486	1890	2200	•	- 16	84	1	, ș	ŧ.		\$5
1563	61186	1999	1400	1	16	83	1		1	1	45
1611	281886	700	1100	100	86	9	16	91	113	89	96
1681	111146	1144	2200	103	- 11	88	92	78	•	97	87
1641	131146	1400	1898	97	- 16	98	78	87	ŧ	- 94	93
1612	301086	1400	1800	<u>91</u>	81	79	82	86	53	\$7	91
1642	11186	788	1855	97	88	84	87	87	119	98	96
1682	281086	1\$1\$	2210	95	78	82	79	71	105	88	94

Table B8: HEAF TREE SPEEDS based on sampled vehicles, observed at study sites by vehicle type, STAGE 2 (1st After)

loc	date	start	finish	car	artic	truck	hu	cartow	BCYC	lvan	tat
2001	289387	145	545	99	182	94	144	85	94	1	99
2002	300387	11#	1540	114	91	88	95		100	98	100
2883	280387	1015	1430	112	1#3	96	144	108	112	114	11
2004	300387	1888	2244	184	99	98	99	88			100
2885	310387	1345	1745	1#5	100	91	10	98	116	97	1#2
2886	36487	1#	584	1#3	102	87	186		1	84	102
2007	40417	1830	2231	113	96		11		115	88	111
2661	68487	1930	2488	189	199		- 144		111	97	144
2007	76487		428	1#5	97		1		124	98	99
2010	46487	193	2400	105	91		111		112	100	184
2011	310387		415	11	107		169		1	94	107
2012	76487	1#3#	1430	. 95	9	84	84		100	91	93
2110	140387	688	1444	1#1	88	82 87	89 96		1 98		94 88
2110	17#387	1844	223 0 488	- 144 - 144			29 		76 1		89 89
2110 2120	190387 190387	1 611	1666	100			86		105		09 96
2124	40417	1800	2266	105			91		193		1#1
2120	176387	TORE	411	111	86		1		i		93
213		688	1004	98			92		1#5	98	94
213	190387	1800		1			1		1		1
2130	40487	1	411	111			92		ŧ		95
2140	318387	1888	2244	16			98		113		95
215	280317	688	1000	117	87	87	94	92	115	99	96
2150	310387	1888	2210	102	92	- 90	96	97	124	84	95
2150		l i	411	98			88		1		92
2160	288387	1	500	102			84		1	-	90
2164	280387	500	1444	105			95		117		93
2160	310387	1	411	100	87		81				88
2160	20487	1866	2286	118	89		92		I		93
2176	268387	1884	2244	1\$3			1		1	-	94
2170	240387	611	1444	1#3					- 185 - 185		1 88 97
2180 2180	210387 240387	4 1884	400 2200	100 104							92
219	240387	600	1000	100			94		i		93
2190	210387	1884	2200	101			91		i		96
2190	260387	1	400	93		93	96		i	103	94
2205	210387	745	1145	96	91		92		146	92	94
2211	248387	100	500	- 101	95		91	87	103		98
2215	18487	1200	1699	99			97		111	95	97
2220	48487	1	444	95	89	87	86	11	123	91	95
2225	276487	1930	2330	93	- #4	85		78	75	90	92
- 2230	310387	1800	22##	99	93		98		10	l I	97
2235	38487	15	415	110			•		ŧ	ŧ	101
2240	18417	1100	2211	- 94			98		97	ł	94
2245	310387	1945	1445		90				110		13
2250	8948 7	1100	1500	99	90		92		96	ł	89
23 88 23 8 1	300387 10487	1200 700	1200 700	110 106	100		113		114 116	99 93	105 103
2302	28487	1400	1400	100	1 14 91		112 81		103	97 97	100
2302	49487	1000	1666	1#7			85		113	92	105
2314	68487	1030	1030	107			1#5		122	95	103
2305	90487	111	888	1#3			166		- 94	101	98
23#6	119487	564	986	149			119		1		114
2400	260317	288	i #	102			104		i	90	91

2401	260387	18##	2288	145	98	89	104	92	112	\$5	162
2442	288387	288	688	1#	92	- 83	\$7	95	•	1	98
2403	288387	1944	23##	115	89	89	96	91	119	Į.	1#3
2444	31#387	288	688	117	96	94	97	86	•	1	97
2405	310387	1844	2244	100	87	86	102	85	186	ŧ.	95
2446	24487	1244	1600	145	89	- 16	93	92	109	107	99
2497	49487	111	1200	99	86	78	92	86	96	91	95
2408	76487	1444	1800	144	89	45	58	93	115	86	100
2501	31#387	1400	1800	91	79	76	71	81	1	84	\$7
2501	110487	1888	2266	97	79	84	86	89	112	100	36
2503	29487	1031	1431	92	86	83	83	79	103	87	91
2503	31#387	1899	2200	97	90	81	74	75	124	98	96
2601	240387	1400	1800	99	87	94	94	89	144	111	96
2601	28487	1888	2200		92	95	ŧ	82	113	96	97
2601	280387	744	1144	144	92	91	1	89	92	94	98
2682	310387	1800	2294	96	45	- \$1	1	84	144	88	95
2642	268387	1400	1800	55	\$ 1	84	87	. 18	10	89	93
2682	240387	744	1100	95	78	\$1	14	IJ	9 9	98	93

.

Table B9: HEAN FREE SPEEDS based on sampled vehicles, observed at study sites by vehicle type, STAGE 3 (2nd After)

loc	date	start	finish	car	artic	truck	bas	cartow	ncyc	lvan	tot
3001	171487	240	611	103	114	101	107	F	ŧ	I	103
3882	121087	1145	1615	105	96	90	111	105	229	98	103
3663	171687	1130	1715	114	92	86	112	92	119	99	102
3004	121187	1800	2266	1#5	100	93	107	79	117	98	102
3005	131087	1400	1800	-144	97	89	91	101	105	99	100
3886	231087	183	2230	116	98	87	105	97	116	99	1#4
3667	241087	100	566	119	144	103	- 144	169	ŧ	•	106
3008	271087	1829	2488	109	1 H	91	94	11	118	103	184
3009	281187	1	431	145	98	91	113	85	126	89	99
3010	311087	1930	2400	1#3	94	90	94	89	117	93	111
3011	131087		415	111	1#7	99	117	ŧ.	ŧ	84	146
3012	271087	1030	1450	97	92	103	118	99	99	91	96
3110	290987	1899	2330	110	91	93	97	95	96	188	93
3111	81087	ł	444	103	92	95	98	1	ł	+	94
3110	101087	600	1000	110	92	87	9 9	91	107	94 AC	96
3120	241887	1800	2288	11	88	82	93	102	- F	96 147	101
3124	221087	688	1000	103	94	91	86	94		107	96 1.4.5
3120	220987	1044	488 2288	123 97	92	1#1 91	ł	1#2 	1 113	184 87	1 #5 93
3130 3130	81087 31087	18## #	444	- 194	88 97	98	ł	111	181 	47 92	111
314	298987	1844	2266	105	57 88	20 86	91	88	1	111	92
3150	11#87	1099	400	194	94	91	1	87	i	141	96
3150	290987	1800	2266	111	88	82	i	98	117	87	91
3150	31\$87	600	1000	109	99	88	91	94		91	99
3160	199987	644	1000	101	89	89	91	92	1	Î	94
316	226987	•	400	145	88	89	Ĩ	1	i	94	90
3164	170937	1800	2200	1#	89	91	93	93	i	97	93
3171	221087	1800	2200	112	89	85	93	Ĩ	i	102	96
3176	220987	644	1404	107	94	98	1 2	195	i	98	112
3184	225987	1886	2244	111	89	97	•	91	•	114	96
318	31087	1	400	98	97	•	85	į.	i i		98
3190	11187	1844	2200	112	91	84	98	89	95	97	99
319	. 11087	ŧ	400	144	97	92	6	71	1	82	97
3190	298987	600	1440	103	92	87	93	9 8	1	96	96
3205	171487	745	2345	94	91	87	93	88	112	91	94
3210	201087	100	500	101	96	92	- 1	89	123	96	98
3215	141087	1200	1600	99	98	89	97	84	114	93	97
322	241087	•	400	92	83	90	98	84	92	32	91
3225	121087	1930	2330	95	90	84	•	100	98	64	93
3234	131087	18##	2268	111	94	95	96	9 1	144	ŧ	99
3235	161087	15	415	116	94	88	99	87	•	•	111
3244	171487	18##	2288	95	87	82	98	79	1#	ł	94
3245	131487	1115	1515	87	82	84	82	73	92	72	85
3250	141087	1100	1588	91	93	88	89	81	107	l	91
3300	121087	1300	1366	109	144	96 1.4.1	111	100	115	96	104
3301 3302	141087	1000	1000	109	117	1#I 98	106	92	126	87 04	106
33 4 3	151087 171087	1600 1230	1500 1230	108 107	97 95	98 91	100 19	92 97	109 103	9 8 99	182 185
3304	201087	1000	1000	107	91 94	96 96	47 99	21 90	115	91 91	100 102
3305	231#87	11##	1188	108	94	114	112	97	119	95	194
3444	151487	288	600	105	92	90	141	103	115	95	96
3401	151487	1800	2200	105	91	85	94	95	119	92	111
3492	171087	200	644	105	94	94	99	96	105	111	101
3403	171987	1944	2300	108	92	97		96	116	96	105
3404	201087	200	611	198	100	92	93	96	1	115	100
					- • •			- •			

201087	1100	2288	102	94	84	95	99	114	"	99	
221887	1200	16#	147	94	91	96	91	123	102	102	
241887	100	1200	59	88	\$1	97	90	145	86	97	
131487	1400	1888	144	89	84	92	92	104	96	99	
171687	1800	2200	98	1	75		91	•		98	
151687	1400	18 66	88	11	76	76	75	E F	74	86	
131487	1400	1800	88	78	75	77	76	\$1	11	\$7	
171087	1100	1500	89	86	78	79	83	93	83	##	
221087	1180	1500	91	19	\$2	\$2	82	107	16	89	
201087	1800	2200	96	89	£ 3	88	85	•	31	94	
241487	1499	1730	93	83	83	98	\$1	93	97	93	
151487	788	1100	99	#	89	76	73	110	98	36	
131##7	1888	2299	101	\$9	91	1	11	1	1#	97	
171087	1350	173	93	- 84	77	82	\$7	124	92	92	
131087	650	1050	9 3	74	79	78	- 84	96	88	91	
151487	1750	2150	89	"	75	74	<u>92</u>	92	82	\$7	
	221087 241087 131087 171087 151087 131087 171087 221087 241087 241087 151087 131087 171087 131087	221087 1200 241087 800 131087 1400 171087 1800 151087 1400 131087 1400 131087 1400 131087 1400 171087 1100 221087 1100 241087 1800 241087 1400 151087 700 131087 1800 131087 1800 131087 1800 131087 1800	221087 1200 1600 241087 800 1200 131087 1400 1800 171087 1800 2200 151087 1400 1805 131087 1400 1805 131087 1400 1805 131087 1400 1805 171087 1100 1500 221087 1100 1500 241087 1800 2200 151487 700 1100 131887 1800 2200 171087 1350 1738 131887 1800 2200 131887 1800 2000 131087 1350 1738 131087 650 1050	221087 1286 1666 167 241087 800 1206 99 131087 1468 1800 184 171087 1800 2206 98 151087 1400 1806 88 131087 1400 1806 88 131087 1400 1806 88 131087 1400 1500 89 221087 1100 1500 91 201087 1800 2200 96 241087 1400 1730 93 151087 700 1100 99 131887 1888 2200 101 171087 1350 1730 93 151087 700 1100 99 131887 1888 2200 101 171087 1350 1736 93 131687 659 1650 93	221087 1206 1664 167 94 241087 800 1200 99 83 131087 1408 1800 184 89 171087 1800 2200 90 0 151067 1400 1806 86 77 131087 1400 1806 86 77 131087 1400 1806 88 78 171087 1100 1500 91 89 201087 1100 1500 91 89 241087 1490 1730 93 83 151487 700 1100 99 84 131687 1866 2200 101 89 131687 1350 1730 93 84 131687 656 1050 93 74	221087 1206 1600 107 94 91 241087 800 1200 99 83 81 131087 1400 1800 104 89 84 171087 1800 2200 95 6 75 151067 1400 1805 86 77 74 131087 1400 1805 85 78 75 151067 1400 1805 85 78 75 171087 1100 1506 89 86 78 221087 1100 1506 91 89 82 201087 1806 2206 96 89 83 241087 1400 1736 93 83 83 151487 700 1100 99 84 89 131687 1886 2200 101 89 91 131687 1886 2200 101 89 91<	221087 1206 1606 167 94 91 96 241087 800 1200 99 83 81 97 131087 1400 1800 164 89 84 92 171087 1800 2200 95 6 75 6 151067 1400 1805 85 77 74 76 131087 1400 1805 85 78 75 77 131087 1400 1806 83 78 75 77 131087 1400 1806 85 78 79 221087 1100 1500 91 89 82 82 201087 1800 2200 96 89 83 88 241087 1400 1730 93 83 83 98 151487 700 1100 99 84 89 76 131687 1800 2200	221087 1206 1606 167 94 91 96 91 241087 800 1200 99 83 81 97 90 131087 1400 1800 164 89 84 92 92 171087 1800 2200 95 6 75 0 91 151067 1400 1805 85 77 74 76 75 131087 1400 1805 85 77 74 76 75 131087 1400 1805 85 78 75 77 76 131087 1400 1806 85 78 75 83 221087 1100 1500 91 89 82 <td< td=""><td>2210&7 1200 1600 107 94 91 96 91 123 2410&7 800 1200 99 83 81 97 90 105 1310&7 1400 1800 164 89 84 92 92 104 1710&7 1400 1800 164 89 84 92 92 104 1710&7 1400 1800 88 75 0 91 0 1510&7 1400 1800 88 78 75 77 76 81 1710&7 1400 1800 88 78 75 77 76 81 1710&7 1100 1500 91 89 85 78 79 83 93 2210&7 100 1500 91 89 85 78 79 83 93 2210&7 1800 2200 96 89 83 88 85 6 2410&7 1400 1730 93 83 83</td><td>221087 1200 1600 107 94 91 95 91 123 102 241087 800 1200 99 83 81 97 90 105 85 131087 1400 1800 144 89 84 92 92 104 96 171087 1800 2200 98 0 75 0 91 0 0 151067 1400 1806 88 77 74 76 75 6 74 131087 1400 1806 88 78 75 77 76 81 80 131087 1400 1806 88 78 75 77 76 81 80 171087 1100 1500 91 89 82 82 82 107 86 201087 1800 2200 95 83 88 85 9 93 93 93 97 151487 700 1100 99 84 89 76 73</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<>	2210&7 1200 1600 107 94 91 96 91 123 2410&7 800 1200 99 83 81 97 90 105 1310&7 1400 1800 164 89 84 92 92 104 1710&7 1400 1800 164 89 84 92 92 104 1710&7 1400 1800 88 75 0 91 0 1510&7 1400 1800 88 78 75 77 76 81 1710&7 1400 1800 88 78 75 77 76 81 1710&7 1100 1500 91 89 85 78 79 83 93 2210&7 100 1500 91 89 85 78 79 83 93 2210&7 1800 2200 96 89 83 88 85 6 2410&7 1400 1730 93 83 83	221087 1200 1600 107 94 91 95 91 123 102 241087 800 1200 99 83 81 97 90 105 85 131087 1400 1800 144 89 84 92 92 104 96 171087 1800 2200 98 0 75 0 91 0 0 151067 1400 1806 88 77 74 76 75 6 74 131087 1400 1806 88 78 75 77 76 81 80 131087 1400 1806 88 78 75 77 76 81 80 171087 1100 1500 91 89 82 82 82 107 86 201087 1800 2200 95 83 88 85 9 93 93 93 97 151487 700 1100 99 84 89 76 73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.

.

TENIC NT	A: TAINY LUN	110 1004	TELBA (11	CAILICS/ AV	ut / ubact	<u>vou at sto</u>	ay sites 1	1 venicie	The pite	I I IDEIU.	
loc	date	start	firish	Car	artic	truck	bus	cartow	RCAC	1743	tot
1001	251886	266	688	20.25	9.00	2.25	.75		.25		32.50
1442	271086	1300	15#6	199.00	23.50	13.50	4.00		5.00	36.50	281.50
1002	271486	1#3#	1230	184.50	41.11	14.14	5.66		3.50	24.44	271.44
1003	11186	1045	1245	1228.58	19.00	21.50	3.#		14.00	21.5	1299.50
1003	11186	1330	1530	773.5	11.11	15.44	5.50		11.00	107.00	923.66
1004	31186	1888	2200	74.25	63.25	11.75	.75		.75	12.00	161.75
1445	41186	1400	1815	178.55	47.95	14.70	6.27		2.89	26.02	276.39
1006	71186	1830	2236	52.75	12.75	2.75	1.75		3.00		73.00
1007	81186	100	588	8.75	15.25	.50	2.00				26.50
1448	111116	1930	2440	75.74	48.51	7.87	2.13		1.49		135.74
1009	121186	1	43#	19.30	35.81	11.86	.23				67.21
1010	151186	1938	2400	52.34	4.47	4.26	1.91				62.98
1011	251186	1	415	7.71	62.17	3.37	1.93		.24		75.42
1012	181186	1830	1430	233.00	43.25	35.25	2.58		3.75	67.75	385.5#
111	141086	1800	2301	80.24	88.92	6.99	2.20		.20	.40	178.94
111	161086		400	12.00	21.25	4.14		21.25			58.50
111	181186	1806	2344	66.68	80.80	8.68	3.00	1.00	1.00	1.00	162.00
111	201186	•	40	19.25	19.75	3.25		.25			42.59
111	221186	688	1000	307.75	10.00	7.50	14.60	1.50	2.00	10.75	353.54
1121	141086		444	13.44	6.25	3.10		.25			22.50
1120	161886	688	1000	132.75	14.75	12.25	3.75		.75	8.##	172.25
112	151186	1100	2288	148.75	3.75	2.44	3.44	.50	.75	4.66	162.75
1120	181186	1	444	17.25	5.75	2.75	.50				26.25
1124	201186	688	1000	150.50	16.25	17.50	1.25			9.66	194.54
1130	141486	544	1000	384.75	18.75	24.00	5.50		5.44	15.00	453.40
1130	161986	1840	2244	251.75	14.75	6.00	.50		3.25	4.75	277.80
113	151186		488	69.75	3.75	2.44	.75	1.25	.50	2.75	80.75
1130	181186	688	1000	481.50	24.54	29.50	5.50	.25	7.50	18.00	566.75
1130	201186	1100	2288	266.50	11.25	4.50	1.00	11.25	3.50		298.00
114	211086	1800	2288	362.50	24.25	10.25	1.75		4.25	11.00	414.00
1140	251886	1	411	82.00	8.25	4.25	1.00	.25	.25	.25	96.25
1140	11186	1	48	104.50	3.00	2.75	.50				110.75
1140	251186	18#	2200	426.25	23.75	10.50	1.25		2.5	2.50	466.75
115	211086	18##	2200	42.75	31.00	4.50			.51	3.5	82.25
115	301086	1	400	3.75	7.51	3.25					14.50
1150	141186	1	400	4.25	11.75	1.75	.25				18.00
115	151146	644	1000	43.50	7.51	3.##	.25	.25	. 50	1.00	56.00
1150	251186	1800	- 2200	59.00	31.75	3.50	.75	3.11		3.75	101.75
115	271186	•	411	3.50	12.50	1.75	.50	.50		.50	19.25
116	81186	•	500	12.8	18.40	2.20	.61	13.80		.61	48.40
1160	81186	588	1444	62.40	25.20	3.00	2.60		.80	2.80	96.80
116	121186	ŧ	40	5.25	52.75	3.50	.25			.25	62.00
1160	131186	1866	2200	51.75	15.50	4.25	2.00		.51	4.H	78.00
116	291186	588	1000	66.40	25.60	3.80	3.20	2.44	1.##	2.6	105.00
1160	21286	1	400	7.75	59. H	5. H	. 25	.50		1.50	74.44
117	251086		444	5.50	.75	.25				.25	6.75
117	111116	644	1000	49.50	4.25	4.00	.75	1.00	. 25		59.75
1170	131186	1844	2200	57.40	6.50	4.50	1.00		2.00	3.00	74.99
117#	251186	600	100	23.50	10.75	2.75	.25	.75	.5#	1.25	39.75
117	271186	1144	2206	30.00	4.50	2.50		1.25		.50	38.75
1180	81186	ł	41	3.00	2.25	.50					5.75
118	111186	1748	2288	26.96	13.70	2.17				.17	43.70
1180	291186	1	444	2.25	2.00	1 74		.5#			4.75
118	21286	1111	2288	15.75	5.75	1.50	4.5				23.00
119# 119#	221186 251186	18 88 6 44	2200	182.00	1.25	2.75	.75	2.40	1.50	8.88	198.25
117	¥31700	044	1000	162.75	11.44	10.00	1.25	2.11	1.50	9.25	197.75

Table BI#: TOTAL TRAFFIC FLOT BATES (vehicles/ hour) observed at study sites by vehicle type, STAGE 1 (Before)

1190	271186	I I	400	6.25	2.75	3.40					12.00
1205	61286	745	1145	956.25	23.44	44.25	13.25		1.11	53.44	1097.75
1210	91286	100	588	42.00	10.00	7.50			1.00	3.75	64.25
1215	31286	1200	1600	144.25	51.75	68.25	11.25		7.25	55.25	\$97.88
1228	61286	•	400	38.25	4.25	3.44			.25	3.00	41.75
1225	\$1286	1930	2330	36.00	4.11	2.75	.25		1.25	3.50	47.75
1236	281486	1800	2200	156.00	17.50	11.25	2.25		2.25		189.25
1235	311086	45	445	13.25	7.75	4.44			. 25		25.25
1248	11186	1800	2200	217.50	4.5	7.00	2.25		1.50		232.75
1245	41186	1115	1515	263.54	24.00	25.75	1.50		2.25		317.00
1256	51186	1100	1590	223.50	27.25	31.25	3.14		1.75		286.75
1300	131486	1300	1300	14.33	6.71	1.67	.50		. 38	. 79	24.38
1301	151486	1444	1444	5.58	5.58	.5 f	.63		. 29	. 18	12.96
1302	161086	1600	15##	6.79	1.38	.54	. 29		.01	.58	9.67
1303	181885	1230	1230	20.88	1.79	.38				.13	23.17
1394	211486	955	955	22.00	8.58	2.54	.54		. 48	.88	34.63
1305	261886	1400	1499	1.71	.58	.25					2.54
1306	241486	1166	11##	7.42	.\$8	.17	.38		.14	. 42	9.29
1400	161486	288	688	6.50	11.5	2.75	. 25				21.44
1441	161886	1866	2266	176.00	25.50	7.25	2.25		1. H		212.00
1402	181985	200	611	22.00	7.25	2.75	1.00		1.00		34.00
1443	181886	19##	2388	120.00	7.00	1.75	2.25				131.00
1494	281886	200	600	27.25	11.11	6.11	1.25		.50		79.00
1405	281086	1800	2288	46.50	14.00	4.75	.75		1.25		67.25
1496	301086	1200	1614	239.75	51.25	27.84	2.25		3.44		323.25
1407	11186	804	1200	168.88	16.25	2.51	4.75		.75		178.25
1408	41186	1400	1886	217.25	28.00	19.50	2.25		2.75	.25	270.00
1501	281486	1411	1666		2.56	14.25	1.25				14.44
1501	11186	1800	2200		2.50	4.25	.75				7.50
1593	231486	1225	1625		13.75	13.25					27.46
1503	281486	1800	2244		3.25	4.50					1.75
1503	61186	1000	1400	43.47	13.50	12.5					25.00
1601	241486	700	1100	\$3.25	11.54	16.75	1.25		1.00	2.25	116.00
1601	111186	1800	2200	12.75	6.50	2.00	.75	. 25		1.50	23.75
1691	131186	1400	1899	38.75	5.5	5.50	2.11	1.50		1.25	54.50
1602	301086	1400	1100	177.75	3.5	16.75	3.75	4.25	1.75	13.75	221.50
1682	11146	788	1455	271.55	5.92	21.00	1.41	10.42	5.63	15.77	330.70
1692	281886	1810	221	94.44	1.50	1.11	.25	1.00	.15	3.25	100.75

loc	date	start	finisk	car	artic	truck	bus	cartow	acyc	lvan	tot
2001	280387	145	545	13.50	16.66	2.25	1.66	.51	.25	.25	27.75
2002	344387	1100	154	317.50	75.91	26.59	5.23	15.45	5.00	52.5	498.18
2003	230387	1015	1430	1994.58	14.94	23.61	2.89	32.53	12.29	128.67	1219.52
2004	300387	1800	2200	66.00	96.50	4.25	.25	2.48	.25	5.75	175.00
2005	31#3#7	1345	1745	117.75	47.00	12.50	2.50	5.50	. 75	24.00	210.00
2446	38487	100	500	7.50	15.25	1.11	3.25	.75		.25	28.00
2117	48487	1\$30	2230	46.00	11.25	2.11	.75	2.75	.50	1.00	64.25
2008	60487	1930	2460	66.17	49.79	10.43	1.70	2.13	1.06	1.91	133.19
2449	74487	ł	421	21.90	25.71	9.76			.24		57.62
2010	48487	193	2400	90.43	10.85	5.11	4.89	4.44	.64	12.55	128.51
2011	31,387	1	415	6.12	57.11	3.13	2.17	.24			68.67
2412	74487	1636	143	288.75	45.75	34.25	2.51	5.50	4.25	54.44	431.00
2110	140387	688	1000	241.00	14.75	8.75	7.50	18.75	2.25	11.5	344.50
211	170387	1800	223	89.30	101.63	10.47	2.33	1.16	1.4	.71	206.98
2110	19#38T	•	488	13.44	23.75	4.10		1.00	.25		42.00
2120	190387	688	1000	145.25	14.25	9,50	2.44	4,75	1.25	9,44	186.84
2120	40487	1800	2200	164.75	1.75	1.25	1.50	5.75	.75	3.00	178.75
2120	17#387	ŧ		6.75	6.25	1.25					14.25
213	170387	688	1444	522.75	30.50	27.50	8.75	12.00	9.50	25.00	636.00
213	190387	1866	2200	263.00	14.50	4.75	.25	5.25	3.25	8.25	299.25
2136	48487	1	464	47.25	1.75	2.25	.75	1.50	.25	1.25	55.66
2140	314387	1866	2200	384.50	25.00	11.25	2.25	8.50	4.25	15.50	451.25
215	281387	688	1000	39,00	1.75	1.25	.50	3.00	.25	2.25	48.00
2150	314387	1866	221	29.51	30.49	2.20	.49	2.44	.49	1.71	67.32
2150	21487	1	481	3.5	11.5	1.50	. 25	.25			17.#
216	281387	ł	588	13.00	21.40	2.80	.86	.61			38.60
2160	280387	500	1888	81.8	25.64	2.61	3.20	7.20	.41	4.31	125.00
2160	31 387	•	411	5.25	58.25	7.75	. 25	1.#		.25	72.75
2160	20487	1800	2200	56.50	21.00	1.75	1.25	3.25	.75	3.00	87.50
2174	248387	544	1888	49.75	2.75	3.59	1.99	3.56	.25	2.85	62.75
2170	264387	1800	22##	27.25	8.75	2.75		2.25	.25	. 25	41.50
2180	210387	•	494	7,25	4.59		.25	.50		.50	13.00
218	240387	1866	2266	29.25	16.50	2.50		2.25		1.25	51.75
2190	244387	600			9.25				1.75		192.50
2190	210387	1888	2288	169.75	.25	. 75	5.25	6.25		3.25	185.50
2190	260387	E F	466	6.25	3.25	3.75	.50	.25		.75	14.75
2205	210387	745	1145	934.75	15.50	34.50	14.00	21.25	12.00	51.00	1483.80
221	240387	111	500	27.50	6.##	5.50	.25	1.25	1.0	3.25	44.75
2215	19487	1244	1666	664.25	50.25	68.88	3.59	18.25	5.99	48.75	855.88
2224	44487	1	(##	41.00	1.25	2.00	. 25	.25	.15	2.25	47.75
2225	276487	1930	2330	43.00	4-88	1.50		.50	.25	1.25	50.50
2230	310347	1866	2200	167.00	16.50	11.50	1.75	3.75	3.75		204.25
2235	34487	15	415	11.00	18.25	3.51		.75			25.5
2246	80487	1888	2200	242.00	3.25	3.11	2.50	5.25	4.11		260.00
2245	310387	1045	1445	259,25	19.50	28.75	1.75	8.75	2.25		320.25
2250	88487	11##	1500	219.50	17.11	21.75	1.75	11.75	2.75		273.56
2388	300387	1200	1200	14.00	7.83	1.88	.46	1.67	.46	1.00	27.29
2301	10487	700	714	5.96	5.33	.17	.17	1.46	.25	.46	13.79
2302	20487	1400	1460	1.13	4.21	.54	.13	1.00	.21	.21	13.63
2303	40487	1000	1000	21.21	1.13	.92	.13	1.42	.25	. 29	25,33
2364	66487	1030	1030	24.73	5.83	2.46	.17	3.33	.46	.33	37.38
2305	90487	800	800	8.38	1.75	- 29	.38	.79	.13	.14	11.75
2306	110487	988	988	2.63	.79	.29	.14	.42			4.17
2444	260387	266	600	4.50	14.50	1.25	. 15	.25	▲	.25	21.00
2401	268387	1800	2200	190.00	25.25	1.75	2.50	11.50	2.75	.75	240.50
2482	289387	200	641	25.44	7.25	1.11	.54	3.25			37.11

Table B11: TOTAL TRAPPIC FLOW RATES (vehicles/ hour) observed at study sites by vehicle type, STAGE 2 (1st lfter)

2483	280317	1986	2300	105.00	5.75	2.40	2.25	8.25	.25		124.50
2444	310387	288	688	11.25	38.25	3.50	.75	1.75			55,50
2485	310387	1888	2288	49.25	16.00	4.00	1.44	3.00	.50		73.75
2496	20417	1200	1644	227.25	35.00	27.75	1.75	11.50	1.50	1.#	345.75
2447	48487	188	1200	175.5#	14.25	5.75	1.11	21.00	1.00	1.75	219.25
2408	79487	1400	18##	267.75	31.75	18.25	2.50	19.50	2.75	1.50	344.40
2581	310387	1400	1800	45.75	4.75	7.54	1.00	3.00		1.44	63.44
2501	110487	1800	2255	47.25	1.25	3,25	1.75	1.25	. 25	.5#	55.5#
25#3	20487	1031	1431	94.50	9.50	11.50	.50	2.75	.54	5.75	125.00
2563	31#387	1844	2288	53.50	4.50	2.50	.25	1. H	.25	1.25	63.25
2681	248387	1400	1885	45.75	9.25	8.##	1.25	1.50	1.75		67.50
2691	28487	1800	2288	16.75	2.75	2.66		.75	.25	.75	23.25
2661	288387	786	1100	37.50	2.25	3.50		2.11	. 25	2.25	47.75
2692	310387	1800	2200	\$3.25	3.00	5.25		.75	2.88	2.75	97.00
2602	260387	1499	1100	179.50	5.50	14.25	3.75	6.11	3.75	17.0	229.75
2692	248387	788	2200	512.00	11.25	23.75	3.44	3.25	11.44	17.25	5\$1.50

.

.

.

Table B12: TOTAL TRAFFIC FLOW RATES { vehicles/ hour } observed at study sites by vehicle type, STAGE 3 { 2md After}											
loc	date	start	finish	CEL	artic	track	bus	cartow	ncyc	lvan	tot
3661	171087	288	611	20.25	17.75	3.25	1.00	.00	.25	.11	42.50
3002	121087	1145	1615	178.88	34.21	13.44	3.83	6.81	2.17	31.91	258,94
3003	171417	113	1715	893.68	8.83	23.42	1.71	30.43	9.91	\$7.01	1454.19
3884	121087	1860	2288	61.5	144.25	8.25	.50	1.25	1.75	4.75	182.25
3005	131687	1400	1800	101.00	48.50	11.50	2.75	4.25	1.25	23.25	192.50
3006	231087	1830	223	50.00	10.25	.50	1.00	1.50	1.00	.#	64.25
3007	241987	100	588	12.25	18.75	.25	2.50	1.25	.11	.11	35. H
3008	271887	1829	2400	69.53	43.43	6.65	1.23	1.23	.53	.11	122.59
3889	281087	ł.	431	17.91	43.26	12.56	.47	.47	.23	.11	74.88
3010	311087	1930	2466	52.98	7.62	2.77	2.77	2.77	1.16	4.47	73.83
3011	131087	1	415	4.58	68.96	3.61	1.69	.11	.11	. 11	78.84
3012	271087	1030	1450	237.14	50.71	31.19	.71	3.33	3.57	62.86	389.52
311	296987	1885	2330	99.57	82.45	7.17	2.45	4.53	. 75	7.92	195.85
311	81987	•	488	14.00	20.50	3.00	.25	.75	1.50	.75	40.75
311	101087	644	1000	332.75	14.25	7.50	6.50	25.50	5.25	9.5	401.25
3120	220987	ł	466	9.44	7.88	2.50		.75	. 11	.75	20.00
3120	221087	600	1000	146.00	20.50	12.25	2.00	3.25	.25	6.25	190.50 180.25
3120	241087	1888	22##	159.00	2.75	2.75	3.44	6. 44 2.50	1.00 .50	5.75 2.25	324.75
3130	81687	18 84 1	2200 400	3 04.00 48.25	12.5 4 3.75	3. 00 1.59	.11 .11	.50		2.50	56,59
3138 3140	31 88 7 29 8 987	1800	2294	367.50	19.00	10.00	1.25	6.75	2.25	17.75	424.5
3154	11087	1099	400	9.44	15.00	1.25		1.00		.51	27.75
3150	290987	1800	2200	37.60	27.25	1.75	.11	1.50	.75	.75	69 .11
3150	31087	644	1000	60.50	5.75	2.44	.50	7.25	1.25	2.50	79.75
3166	198987	§4	1444	131.44	18.44	4.15	1.75	6.54	.54	4.75	166.75
3160	221987		400	6.75	43.00	4.54	.11	.#	.11	.75	55.00
3160	170987	1800	2288	75.50	19.00	3.75	1.50	4.75	.Н	3.00	107.50
3176	220987	644	1000	65.51	3.75	3.25	.25	4.75	.Н	11.75	89.25
317	221017	1866	2244	33.25	6.25	2.50	. 25	.50	. 50	1.#	44.25
3180	220987	1800	2266	25.75	10.50	1.66	.11	3.80	.11	1.00	40.25
3180	31087	1	400	7.01	2.50	. 11	. 25	.#	.11	.11	9.75
3190	101087	1800	2200	163.25	.50	1.75	2.00	7.44	.51	4.50	184.50
3190	11#87	•	400	3.00	1.25	1.75	.11	.25	.00	.75	7.60
3190	298987	644	1000	157.00	12.00	10.50	.50	9.75	2.00	30.75	222.50
3205	171087	745	2345	241.31	4.51	9.31	4.54	5.56	3.19	12.13	288.58
3210	241487	100	500	32.50	2.25	.75	.11	5.50	10.25	3.00	54.25
3215	141087	1288	1688	698.5 1	37.75	63.88			2.50	.25	828.75
3228	241987	1016	444	34,75	4.50	1.75	. 25	1.25	.51	1.75	44.75
3225 3230	121087 131087	1938 1888	233 8 22 8 0	35.75 136. 44	4.25 25.25	.75 8.75	.00 2.00	.75 2.50	.75 1. 00	1.00 .00	43.25 175.50
3235	161187	15	415	15.50	9.25	2.00	.54	.59		.#	27.75
3240	171087	1800	2288	215.25	3.00	4.75	3.00	4.00	4.25		234.25
3245	131087	1115	1515	321.25	24.25	31.25	2.50		1.75	.11	395.50
3250	141087	1100	1500	262.00	20.00	22.25	2.25	5.54	1.25	.11	313.25
3300	121687	1300	1300	16.88	11.21	2.63	.71	2,38	.79	.88	35.46
3391	141987	1898	1999	6.88	6.33	.63	.19	1.58	.15	.19	16.29
3382	151087	1600	1600	7.13	2.18	.58	.21	2.46	.21	.42	12.54
3303	171087	1230	1230	27.46	4.84	1.04	.25	2.25	.н	.25	35.33
3304	201087	1000	1666	20.75	6.96	2.50	.46	3.50	.21	. 88	35.25
3305	231987	1144	1100	7.67	1.67	.63	.42	1,38	.17	.33	12.25
3466	151487	288	688	6.75	12.25	2.00	.11	1.44	.00	.5€	22.50
3401	151087	1866	2266	143.25	21.00	9.75	2.50	9.00	1.50	3.25	190.25
3482	171017	284	688	22.00	7.50	2.50	.50	2.50	. 11	.25	35.25
3403	171087	19##	2388	106.75	8.75	2.25		1.25	1.25	3.50	132.00
3444	201087	200	688	13.00	46.00	6.25	.75	1.25	.#	.25	67.5
3445	201017	1886	2200	25.50	7.75	2.25	.50	1.44	.75	.75	38.50

3406	221487	12##	1644	215.75	37.75	22.00	3.75	12,75	1.25	6.54	297.75
3407	241887	188	1244	166.25	\$.75	3.25	5.50	19.25	1.75	3.25	205.00
3408	131687	1400	1844	322.75	34.75	23.25	2.44	46.75	3.44	11.25	443.75
3501	171017	1800	2200	33.25	.11	.75	.#	.25	.11	.11	34.25
3501	151087	1400	1800	62.00	4.25	2.50	1.00	.75	.11	1.00	71.50
3501	131487	1400	1800	83.88	6.50	3.75	2.00	.51	.50	.50	96.75
3503	171917	1140	1500	93.44	4.25	1.11	1.#	4.25	. 25	5.75	112.50
35#3	221087	1100	1500	81.75	12.75	12.44	.75	4.11	.25	6.11	117.50
3503	201087	1800	2299	53.25	1.11	4.75	.50	1.25	.11	2.50	66.25
3601	131087	1888	2200	14.75	3.75	3.44	.11	.25	.H	.50	22.25
3601	151487	788	1144	94.54	9.75	10.75	.25	.75	.75	4.75	117.50
3601	241447	1466	1736	59.39	.61	1.12	1.21	1.52	.31	1.21	66.16
3612	131687	650	1454	384.75	12.50	17.75	4.44	1.75	7.25	38.86	458.00
3602	151087	1750	2150	98.88	4.25	3.25	.51	1.25	.5#	.#	99.75
3642	171087	1350	1736	238.68	1.32	1.05	2.37	6.84	1.58	14.21	266.05

APPENDIX C - Weighting procedures

1. Matching for production of weights.

Tables A1 to A9 (Appendix A) contains a complete description of each of the sites surveyed in the all stages of the study.

There were 94 sites surveyed in the before study, 72 in the first after study and 71 in the 2nd after study. The before study ran from 30.9.1986 through to 9.12.1986. By comparison, the first after study ran from 17.3.1987 through to 27.4.1987. Thus the first after study was carried out over a shorter elapsed time than the first before study. The 2nd after study was shorter still, from 29.9.87 to 31.10.87.

No new sites were introduced in the first after study. A number of the sites which were surveyed in the before study were not subsequently surveyed in the first and second after studies. This led to a matching problem for the creation of across study stage weights.

2. Matching the first After Sites to the Before Study Sites:

Because only 72 sites were studied in the first after study compared to 94 in the before study, 72 sites in the first after study had to be matched with 72 in the before study. This proved interesting.

A first attempt at matching the first after to the before study sites was based on the site location number and the start and finish times as specified in the specifications for the study. This yielded matches for all the first after sites except for 21 sites. For these remaining 21 a matching table was constructed which included matches to the nearest start and finish time and where necessary day of week match.

The main reason for these mis-matches was that a number of the sites in the before study had been surveyed more than once. At the end of this matching exercise the entire 72 sites were matched with their corresponding sites in the before study.

This matching was only carried out on stages 1 and 2 because the q-flow weighting was shown to have no significant effect on the statistical analysis.

3. Q-flow and total volume weights

A number of factors need to be considered in relationship to this weighting.

- a. The literature, especially the paper by Farthing (Farthing,1977), notes that there is a correlation between the flow rates and the speed of vehicles. Thus the flow rate (veh/hr) versus the total traffic volumes need to be examined as potential weights. The question arises: What should we use as the weight? Just the total traffic volumes or some indication of the flow rate?
- b. Irrespective of the weighting procedure used it is important to note that there is a potential correlation between these weights and the dependent variable, i.e. the speed of the vehicles. The weighting factor could potentially be confounding the results of the analysis. Thus it is important that an analysis be done of

these weights vs speed to determine whether any confounding exists.

4. Definitions used in this discussion of weights:

- 1. the term "Q-flow rate" (or flow rate) refers to the rate of traffic flow (in vehicles per hour) passing a survey site. The flow rate is computed for the direction of travel used to obtain the sample traffic volumes. The Q-flow rate is defined as the total traffic volume observed divided by the time period of that observation period for vehicles travelling in the sampling volume direction.
- 2. The "percentage of heavy vehicles (Pcthv)" is defined as the total volume of articulated vehicles divided by the total volume of all vehicles. The percentage of heavy vehicles also equals the flow rate of the articulated vehicles divided by the total flow rate.

The aim of the flow analysis was to see what effect flow rates had on the average vehicle speeds. Also of interest was the effect of the mix of vehicles, especially the percentage of heavy vehicles on the flow rate and mean free speeds.

5. Weighting functions considered.

Two types of weights were computed and tested for this study.

Raw weights: Total Traffic Volumes

The raw weight was computed by the division of the observed total traffic volume by the observed sample traffic volume at each site within vehicle type and stage. Thus, for any one site there were seven different weights produced, one for each vehicle type. These weights were then linked back across to the free speed data and matched against every free speed observation by vehicle type and site.

These weights were superseded by the Q-flow weights below.

Q-flow weights: Q-flow rates

The Q-flow weights were calculated by dividing the Q-flow rate of the before study for each site by that site's corresponding Q-flow rate during the first after study for each site within vehicle type. The site matching across stages was achieved using the relationship QLINK12 for stage 1 to 2 (table E.1). Thus seven different weights were produced for each site pair (six vehicle types and one all vehicle weight) and these were assigned as the weights for stage 2. Stage 1 weights were set to 1.0.

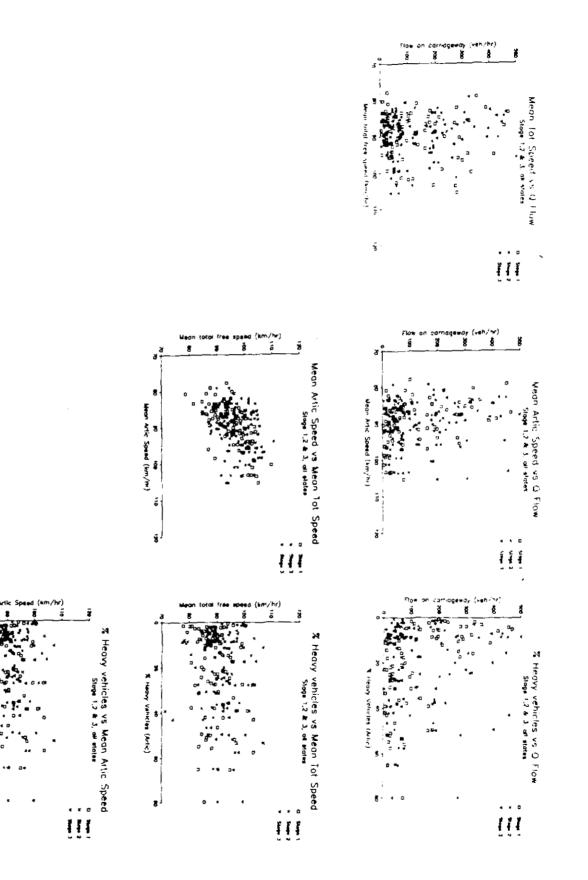
An example: for site 2602 and 1602 in the first after and before study, the Q-flow weight for cars would have been 177.75 divided by 179.50 which creates a weight for the first after study of 0.99. By default the weight for the before study is 1.

The Q-flow weights were better than the raw weights because they took into account the speed recoding session length and the total traffic volume. They were only computed for the stage 1 to 2 match.

The basic data used to compute both weights are included in Appendix B,

6. Summary of the Traffic Flow Analysis

- 1. The relationship between the total flow rate and the mean free speeds of vehicles seem to be very low indeed. Looking at table C2 row 1, the correlations between the total flow rates and each of the mean free speeds for each vehicle type are all below 0.2 and none are significant.
- 2. The correlation between total flow rate and percentage of heavy vehicles is -0.32 (table C2). It is significant and accounts for less that 16% of the variance. The corresponding plots (plot C1) show that the relationship is effectively hyperbolic. This result conflicts with the findings of Farthing (Farthing, 1977).
- 3. The relationship between the mean free speed of articulated vehicles and the mean free speed of other vehicles is high as indicated by correlation coefficients in excess of .38 (table C2).
- 4. Similarly, there is a high correlation between the mean free speed of cars and all other vehicles as indicated by the size of the correlation and the significance of these correlation coefficients in table C2.
- 5. An analysis of variance of the percentage of heavy vehicles and stage of the study indicated no significant relationship. We can conclude from this that the percentage of heavy vehicles on the roads remained unchanged between the two stages (see table C1).


2

8

8

.

4 Heavy Vancios (Mic)

			t Ierry To	edicies		Tree Spe (all reb	ed (ka/br) icles)		g Flor (veh/hr) (all vehicles)			
tete	Stage	less	std	I	len	sti	r	Ien	St i	1		
IST .	1	26.44	24.14	14	101	12.4	4214	298.9	372.1	14		
	2	32.24	24.11	12	102	13.1	62 11	253.5	340.2	12		
	3	3 4.14	25.81	12	101	12.2	48 37	213.4	211.1	12		
fic	1	24.81	17.74	Ø	92	12.3	3110	130.1	139.5	Ø		
	1	24.94	23.94	24	<u>93</u>	11.2	2884	141.3	153.6	24		
	3	21.14	21.14	22	95	11.4	5735	133.5	122.7	22		
<i>01</i>	1	18.84	1.34	10	94	11.9	6866	320.7	374.7	11		
	2	9.34	11.41	11	95	11.7	6375	316.5	364.6	- 11		
	3	3.28	9,41	10	54	11.8	6554	239.8	241.6	11		
h	1	21.4	12.34	7	102	14.3	3193	16.7	11.1	1		
	2	21.74	11.64	7	103	15.1	3598	19.1	11.4	1		
	3	22. H	10.91	F	111	13.1	3864	24.5	11.9	6		
52	1	22.44	19.44	9	<i>51</i>	14.4	(15)	146.2	146.8	ţ		
	2	26.44	25.91	9	9 9	14.3	3979	157.9	122.0	9		
	3	22.44	22.94	9	100	13.4	3885	159.2	141.9	,		
tas	1	39.28	14.18	5	14	11.#	1227	16.5	9.5	5		
	1	6.11	2.64	4	<u>92</u>	14.7	1995	76.7	32.4	- 4		
	3	5.68	3.61	6	89	12.4	329	83.1	31.7	6		
let	1	1.74	11.11	6	9 3	12.7	2511	141.1	114.8	6		
	2	6.31	5.21	6	<u>94</u>	12.1	2817	174.5	212.2	6		
	j	5.64	6.21	6	92	12.1	2889	171.6	162.8	í		
Total		22.88	21.41		96	13.5	24451			 94		
	2	21.44	21.44	72	97	11.6	25859	173.7	233.6	72		
	3	19.24	24.28	11	97	13.2	33674	155.4	111.4	11		

Table C1: Percentage of Heavy vehicle, Neum free speeds and Flow rates observed at Traffic survey sites, stages 1,2 & 3

lote;

(1) Tespenie didn't record may cars during stage 1. This explains the anomaly high 4 IV in Stage 1.

Bean Free Speed (Hfs) in kn/b										
Total flow rate 4 beary rebicles Hfs: cars Hfs: articulated	Tot flow 1.00	4 h reh <u>32</u> 1.00	Car 10 <u>.46</u> 1.00	Artic 13 <u>.45</u> <u>.68</u> 1.11	frack 14 <u>.61</u> <u>.67</u> <u>.61</u>	Hs <i>H</i> . <u>.17</u> . <u>.53</u> . <u>.57</u>	Cartor 15 .26 <u>.69</u> <u>.11</u>	lege .15 .15 <u>.32</u> . <u>31</u>] ras # .19 <u>.58</u> . <u>35</u>	111 reb 02 .19 <u>.79</u> <u>.75</u>

Note: (1) Significance level of correlations: ___ (= 0.01)

The overall conclusion to be drawn from the Q-flow analysis is that the weights computed from flow rates would not confound the analysis of free speed. This conclusion is provisional and would require deeper analysis to verify this conclusion.

6. Neither weight type statistically altered the results of any of the major analyses i.e. free speeds by State and stage. Thus ALL results reported henceforth in this report are UN-WEIGHTED.

7. Database cleaning

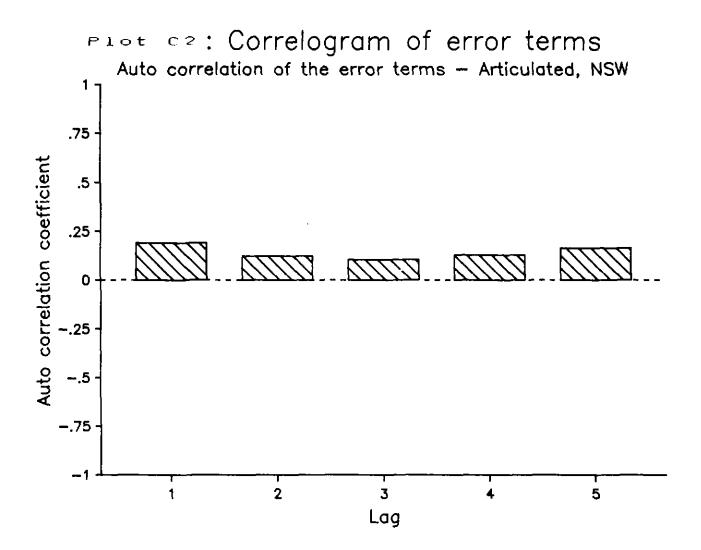
Appendix D contains a copy of the free speed data collection form used in all stages of the study.

Appendix G contains a comprehensive list of the major problems encountered in the editing of the study stages.

8. Problems encountered - all stages

The major problem encountered with the data was with the congruence between the total traffic volume counts and sample volume counts. From the perspective of weighting, it is important to ensure that the direction of the traffic stream sampled corresponds to the total traffic volume tally for that direction.

Some States had tallied the total volume in both directions, but only sampled in one direction. Others had sampled and tallied in one direction only. Tables G.1 through G.3 in Appendix G illustrate the p differences.


What made all this the more difficult was the sometimes unavailability of the tally sheets for verification.

Site numbers, dates of recording and start and finish times often differed between the free speed records (which were numerous) and the single covering header sheet. The relational facilities of the ZIM database proved invaluable in overcoming these problems.

The layout of the header sheet was not ideal and if used in future studies should be simplified and redesigned.

The sample volume information requested on the header sheet was unnecessary as it was computed directly from the free speed data. Ruled lines on the free speed data sheets would facilitate speedier data punching.

Lastly, no attempt has been made by the consultant to check on the quality of all the data collected by the field teams. FORS staff accompanied a small number of NSW field teams during data logging and the consulatant attended a recording session with an ACT team. A blind retest would be needed to establish the level of experimenter variability induced by the data coding procedures.

APPENDIX D - Forms used in the surveys

.

ŕ	
VEHICLE SI	PEED SURVEY 1005
Location GUNDAGAI N.	S.W. Locn. No. 0002-006
Road name HUME HIGHWAY	Type of road HIGHWAY
Distance from identifing point	SKA SOUTH OF BEREGNA TURNOFF. KM
Day TUESDAY	Date 4-11-86
Time start 14, 15	Time finish 1815
Road width 7.9	No. of lanes 2 (ONE EACH WAY)
Road surface BITUMEN	Road condition FAIR
	n Median type N/A
Shoulder width 1.5/2.0	n Shoulder surface GRAVEL / BINAN
	h Direction of traffic N/S
Grade <u>~ / 9</u>	6 Adjacent land use FARMING KRAZING
Weather FINE/SUNNY	Visibility CLERR
Speed meter used AMPHOMET	ER /KRIL (PNEVMATIC)
Police activity HWY PT. CAR	
731	
Traffic volume: 191 / 550 Carl	
Traffic volume: 191 / 550 Car/ 43 / 65 *** Light vans 23 /	38 Trucks 43 156 Articulateds
Traffic volume: 191 / 550 Carl 43 / 65 "* Light vans 23 / 3 / 9 Motor cycles 6	38 Trucks 43/156 Articulateds 20 Buses 315/852 Total
Traffic volume:191 / 550 Carl43 / 65 "* Light vans23 /3 / 9Motor cycles6Sample size:Carl	38Trucks43 / 156Articulateds(20Buses315 / 852Totalcar derivativesCars towing
Traffic volume: 191 / 550 Car/ 43 / 65 "* Light vans 23 / 3 / 9 Motor cycles 63 / 9 Motor cycles 6Sample size:Car/ Light vans	38Trucks43 / 156Articulateds(20Buses315 / 852Totalcar derivativesCars towingTrucksArticulateds
Traffic volume: 191 / 550 Car/ 43 / 65 "* Light vans 23 / 3 / 9 Motor cycles 63 / 9 Motor cycles 6Sample size: Car/ Light vans Motor cycles	38Trucks43 / 156Articulateds20Buses315 / 852Total21TotalCars towing22TrucksCars towingTrucksArticulatedsBusesTotal
Traffic volume: 191 / 550 Car/ 43 / 65 "* Light vans 23 / 3 / 9 Motor cycles 63 / 9 Motor cycles 6Sample size:Car/ Light vans	38Trucks43 / 156Articulateds20Buses315 / 852Total21TotalCars towing22TrucksCars towingTrucksArticulatedsBusesTotal
Traffic volume: 191 / 550 Car/ 43 / 65 "* Light vans 23 / 3 / 9 Motor cycles 63 / 9 Motor cycles 6Sample size: Car/ Light vans Motor cycles	38 Trucks 43 / 156 Articulateds 20 Buses 315 / 852 Total ar derivatives Cars towing Trucks Articulateds Buses Total Trucks Articulateds Buses Total Buses Total
Traffic volume: 191/550 Carl43/65 *** Light vans23/3/9Motor cycles6Sample size:CarlLight vansMotor cyclesDescription of approaches to siSLIGHT BAN DS AT EACH ENROADWORKS AT GUNDAGA	38 Trucks 43 / 156 Articulateds 20 Buses 315 / 852 Total ar derivatives Cars towing Trucks Articulateds Buses Total Buses Total
Traffic volume: 191/550 Carl 43/65 ¹⁰⁵ Light vans 23/ 3/9 Motor cycles 6 Sample size: Carl Light vans 6 Motor cycles 6 Description of approaches to statistication 5 SLIGHT BANDS AT EACH EN 5	38 Trucks 43 / 156 Articulateds 20 Buses 315 / 852 Total ar derivatives Cars towing Trucks Articulateds Buses Total ar derivatives Cars towing Trucks Articulateds Buses Total arvey site STROICHT.
Traffic volume: 191/550 Carl 43/65 ¹⁰⁵ Light vans 23/ 3/9 Motor cycles 6 Sample size: Carl Light vans 6 Motor cycles 6 Description of approaches to statistic Sample size SLIGHT BANDS AT EACH EN ROADWORKS AT GUNDAGA	38 Trucks 43/156 Articulateds 20 Buses 315/852 Total ar derivatives Cars towing Trucks Articulateds Buses Total DOF STRONGHT.
Traffic volume: 191/550 Carl 43/65"*** Light vans 23/ 3/9 Motor cycles 6 Sample size: Carl Light vans Motor cycles Description of approaches to s SLIGHT BANDS AT EACH EN Remarks: NUMEROUS VENIC TUBES WERE	38 Trucks 43/156 Articulateds 20 Buses 315/852 Total ar derivatives Cars towing Trucks Articulateds Buses Total DOF STRONGHT.
Traffic volume: 191/550 Carl u3/65 ¹⁰⁴ Light vans 23/ 3/9 Motor cycles 6 Sample size: Carl Light vans Carl Motor cycles Carl Description of approaches to s S SLIGHT BANDS AT EACH EN Remarks: NUMEROUS VENIC TUBES WERE SE Speed readings by: P. Johns	38 Trucks 43/156 Articulateds 20 Buses 315/852 Total Cars towing Trucks Articulateds Buses Total Urvey site: D OF STRONGHT. LES BRAME DAGE THE EN. (MANUN VICTORIAN ROGOS)
Traffic volume: 191/550 Carl u3/65 ¹⁰⁴ Light vans 23/ 3/9 Motor cycles 6 Sample size: Carl Light vans Carl Motor cycles Carl Description of approaches to s S SLIGHT BANDS AT EACH EN Remarks: NUMEROUS VENIC TUBES WERE SE Speed readings by: P. Johns	38 Trucks 43/156 Articulateds 20 Buses 315/852 Total car derivatives Cars towing Trucks Articulateds Buses Total urvey site: D OF STRONCHT. LES BRANE DASE THE INSEN

Vehicle Free Speed Survey									
							=		
DATE <u>4~11</u>	<u>.86</u> L	OCN.NO)			SH	EET_LOF_19_	—	
LOCATION GUNDAGAI									
	Ê			2			VEHICLE CODI	Ξ	
	ц Т Ц	ы	8			NIN ON INCOMING	<u>10.1100 - 300</u>	-	
	SPEED (km/h)	VEH. CODE	OTHER CODE		וצ	VEHICLES	Cars	ЗØ	
TIME	PEI	ΈH.	H	7	_	UL OL	Cars towing	31	
		36		Ŋ	5			32	
1405	76			\vdash	/	0	Motorcycles		
·	110	36				0	Bus (=4 whis)	33	
	113	30					Light van	34	
	רין	3¢				/	Truck (-4 whis)	35	
	8-4	<u>3</u> ø				0	Semi&Artic.	36	
	90	36				0			
	96	36	/		/	0	OTHER CODE	-	
	100	36				5	TRAILER		
	84	30				0	Box trailer	1	
	102	3\$			~	0	Caravan	2	
	88	30			1	υ	Folding caravan	3	
	82	35				υ	Car trailer	4	
	94	3ø				2	Bike trailer	5	
	45	3ø			7	/	Boat trailer	- 6	
·	113	3ø			7		Horse trailer	7	
1.420.	100	36	}		$\overline{}$	1	Other trailer	8	
1430	105	30	┝━─			0		U	
1430	12.5	30	┟╌╼		F	0			
							LOADING OF	-	
·	1/3	30				/	TRUCKS & SEMI	5	
	124	30			1	0	Loaded	1	
	96	35		 	1	/	Unloaded	2	
	113	30			/	/		ank	
ļ	95	30	 		1	0	MOTORCYCLES		
	76	35				0	Rider only Bla	ank	
	104	30			/	Ø	Pillion	ø	

ł

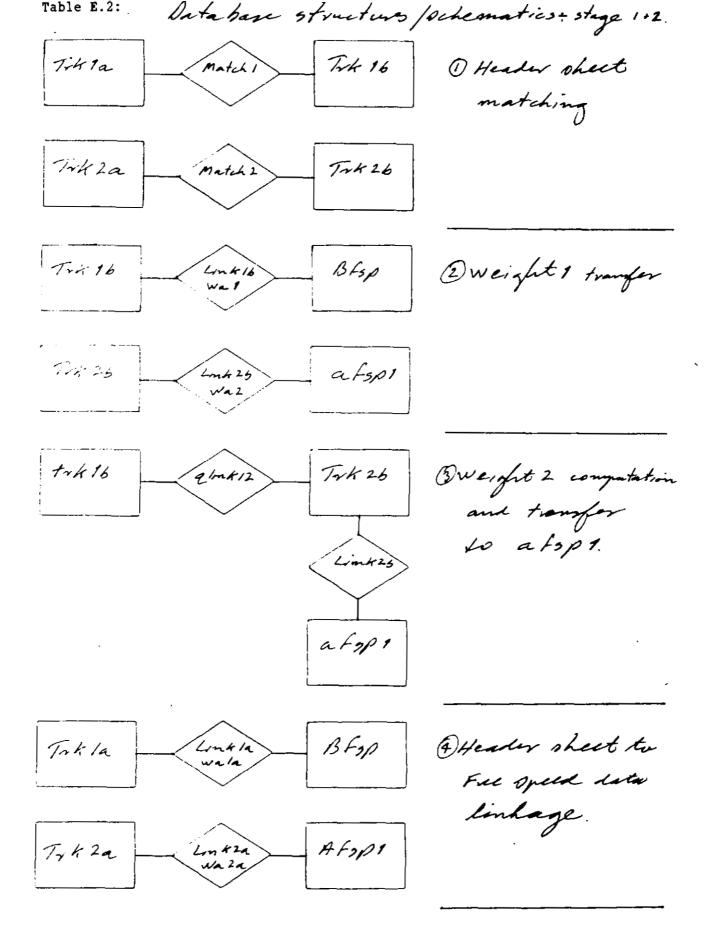
LOCATION	GAN	DAGAI			AFFIC			LOCN. N		202- (106	DATE	4 11	86		
TRAFFIC DIRECTION N																
Time	Cars	Cars	- 1	Trucks				Buses	Cars	Cars	_	Trucks				Buses
	etc.	etc. towing	vans		ulated	cyc RO			etc.	etc, towing	vans		ulated	RO		
415 - 1430	12		4	3	4		-	-	35	' l	-1	3	y	•		
430 - 1445	19		5	6	6	1	-		10	# 3	ц <u>О</u>	5	16	12	-	" 2
1445 - 15.00	35	۱ ۱	1_	6	1		_	· · ·	107	4	12	6	36	'3	-	^{m1} 6
5.00 - 15.15	41	1	10	<u> </u>	10		~	· 2	143	- <u>5</u>	1]	G	44	3	-	NI 10
15.15 - 15.30	54	1	13	9	13	1	-	2	162	6	21	7	47	उ	~	11
15,30 - 15.45	64	2	15	9	16	2	-	3	196	1	25'	8_	58	3	-	141 15
15.45 - 16.00	81	3	8	<u>q</u>	19	2	-	4	231	' 8	28	11	63	3	'	16
1600 - 16.15	100	3	21	13	22	2		5	298	10	.34	18	81	[4		16
1615 - 16-50		3	_25	13	23	2	-	5	341	<u> </u>	37	8	87	4	-	<u>' 17</u>
1630 - 1645		" 5	26	13	29	2	-	6	339	<u>IX</u>	41	23	103	4		17
1645 - 17.00		5	29	14	33	3	-	6	4.20	10	46	27	110	<u>ک</u>		17_
17.00 - 17.15		5	31	14	33	3	-	6	453	12	51	28	118	2	-	" 19_
17.15 - 17.60		6	35	17	35	3		6	480	12	55	>2	124	5		14
1730 - 1745		6	39	<u> 21</u>	38	3		6	<u>c02</u>	- ₁ 2	59	34	132	5		19
1745 - 1800	- A.	<u> </u>	40	22	41	3		6	518		61	35	<u>141</u>	My	<u> ' </u>	19
1800 - 1815	191	6	43	23	43	3	-	6	550	14	65	38	156	<u>'8</u>		20
TOTAL	191	6	43	2.3	43	3	~.	6	550	4	65	38	156	8	11	20

.

APPENDIX E - Database schematics

Database software; ZIM ver 2.53

Entity names


_

bfsp	Before survey free speed data
afsp1	1st After survey free speed data
afsp2	2nd After survey free speed data
trk1a	Before survey header sheet part 1 ~ site descriptors
trk1b	Before survey header sheet part 2 - Total and Sample traffic
	volumes
trk2a	1st After survey header sheet part 1 - site descriptors
trk2b	1st After survey header sheet part 2 - Total and Sample traffic
	volumes
trk3a	2nd After survey header sheet part 1 - site descriptors
trk3b	2nd After survey header sheet part 2 - Total and Sample traffic
	volumes

<u>Relationships</u>

RelName RelCondition

link1a	trk1a.loc=bfsp.loc and trk1a.sdate=bfsp.sdate and bfsp.time >=
	trkla.sstart and bfsp.time <= trkla.sfinish
link1b	trk1b.loc=bfsp.loc and trk1b.sdate=bfsp.sdate and bfsp.time
	<pre>>=trk1b.sstart and bfsp.time <= trk1b.sfinish</pre>
link2a	trk2a.loc=afsp1.loc and trk2a.sdate=afsp1.sdate and afsp1.time
	>=trk2a.sstart and afsp1.time <= trk2a.sfinish
link2b	trk2b.loc=afsp1.loc and trk2b.sdate=afsp1.sdate and afsp1.time
	>=trk2b.sstart and afsp1.time <= trk2b.sfinish
link3a	trk3a.loc=afsp2.loc and trk3a.sdate=afsp2.sdate and afsp2.time
	>=trk3a.sstart and afsp2.time <= trk3a.sfinish
link2b	trk3b.loc=afsp2.loc and trk3b.sdate=afsp2.sdate and afsp2.time
	>=trk3b.sstart and afsp2.time <= trk3b.sfinish
match1	trk1a.loc=trk1b.loc and trk1a.sdate=trk1b.sdate and
	trkla.sstart=trklb.sstart and trkla.sfinish=trklb.sfinish
match2	trk2a.loc=trk2b.loc and trk2a.sdate=trk2b.sdate and
	trk2a.sstart=trk2b.sstart and trk2a.sfinish=trk2b.sfinish
match3	trk3a.loc=trk3b.loc and trk3a.sdate=trk3b.sdate and
	trk3a.sstart=trk3b.sstart and trk3a.sfinish=trk3b.sfinish
qlink12	trk1b.stg11=qlink12.stg1 and trk2b.stg21=qlink12.stg2
wa1	trk1b.loc=bfsp.loc and bfsp.loc >=1300 and bfsp.loc <=1399
wala	trk1a.loc=bfsp.loc and bfsp.loc >=1300 and bfsp.loc <=1399
wa2	trk2b.loc=afsp1.loc and afsp1.loc >=2300 and afsp1.loc<=2399
wa2a	trk2a.loc=afsp1.loc and afsp1.loc >=2300 and afsp1.loc(=2399
wa3	trk3b.loc=afsp2.loc and afsp3.loc >=3300 and afsp2.loc<=3399
wa3a	trk3a.loc=afsp2.loc and afsp2.loc >=3300 and afsp2.loc<=3399

APPENDIX F - Data transfer specifications

APPENDIX F - Data transfer specifications for Free speed database

Dept of Transport Truck Speed Study - Jan 1987 to Dec 1987.

Contract #: 86/506/074/4

14 December, 1987

Data file transfer to NMDS

Consultants:

R W Fitzgerald & Associates, Po Box 125, Queanbeyan, NSW 2620 AUSTRALIA Telephone: (062) 972 697 Electronic mail: MCI mail 3367164 Dialmail 16342 Telex 650-3367164 Raw data files on enclosed floppies: Speed123.dta raw free speeds for stages 1,2 & 3 Head123.dta -Site description information from header sheets for stages 1,2 & 3 Number of records expected: Speed123.dta - 77,551. Head123.dta - 237. Format of floppies: IBM PC/XT, dsdd, 360 kb File format: fixed field ASCII References: (1) See major report on this project and appendices for further details of data and database structures. (2) See enclosed ZIM program Sampva8 which contains a complete field layout guide to datasets. (3) Coding for the header sheet file HEAD123.dta is as follows: Roadtype - 1=Freeway or any 4 lane road, 2=2 lane and other roads Speedmeter - 1=Radar, 2=amphometer or infra red beams Direction - 1=North, 2=East, 3=South, 4=West Weather - 1=Fine, 2=Showers/overcast Visibility - 1=good/clear, 2=Poor/fair Coding for other header sheet fields and the free speed data is to be found on the data collection form. (4) Missing data has been set to blank. * DOT/ FORS Truck Speed study raw data dump. **\$ SAMPVA8 :** outputs ALL trk1/2/3 and bfsp/afsp1/2 for ASCII transfer to DOT * ver 1.0, 14-Dec-87 % by R W Fitzgerald & Associates, (062) 972697 * database software: 2IM ver 2.53

* First - Raw speed data from tally sheets Sormat of ASCII raw speed data: % field columns Iocation 1-4 🖇 time 5-8 9-11 Speed % vehicle code 12-13 % direction 14 15-20 \$ date * vehicle follow 21-22 % For coding, see speed recording tally sheets in report appendix % For file linkage, also see report appendix. % Stage 1 output set columnspacing Ø set headings off set pause off set output temp3 list all bfsp format \$tocharacter(loc,4) \ \$tocharacter(time,4) \$tocharacter(speed,3) \$tocharacter(vehcod,2) \ \$tocharacter(bfsp.direct,1) \$tocharacter(sdate,6) \ \$tocharacter(vehfoll,2) % Stage 2 output set output temp3 append list all afsp1 format \$tocharacter(loc,4) \ \$tocharacter(time,4) \$tocharacter(speed,3) \$tocharacter(vehcod,2) \ \$tocharacter(afsp1.direct,1) \$tocharacter(sdate,6) \ \$tocharacter(vehfoll,2) * Stage 3 output set output temp3 append list all afsp2 format \$tocharacter(loc,4) \ \$tocharacter(time,4) \$tocharacter(speed,3) \$tocharacter(vehcod,2) \ \$tocharacter(afsp2.direct,1) \$tocharacter(sdate,6) \ \$tocharacter(vehfoll,2) set columnspacing Ø set headings off set pause off set output temp4 Second, output part 1 of header sheets * which contains all the site descriptions * FORMAT of header sheet data: * field column % location 1-4 % roadtype 5 % date 6-11 \$ start time 12-15

```
% finish time 16-19
* speedlinit 20-22
% weather
              23
* visibility 24
% speedmeter 25
* Stage 1 output
set output temp4
list all trk1a format $tocharacter(loc,4) \
$tocharacter(roadtype,1) $tocharacter(sdate,6) $tocharacter(sstart,4) \
$tocharacter(sfinish,4) $tocharacter(speedlimit,3) \
$tocharacter(weather,1)
                                                 $tocharacter(visibility,1)
$tocharacter(speedmeter,1)
% Stage 2 output
set output temp4 append
list all trk2a format Stocharacter(loc, 4) \setminus
$tocharacter(roadtype,1) $tocharacter(sdate,6) $tocharacter(sstart,4) \
$tocharacter(sfinish,4) $tocharacter(speedlimit,3) \
$tocharacter(weather,1)
                                                 $tocharacter(visibility,1)
$tocharacter(speedmeter,1)
% Stage 3 output
set output temp4 append
list all trk3a format Stocharacter(loc,4) \
$tocharacter(roadtype,1) $tocharacter(sdate,6) $tocharacter(sstart,4) \
$tocharacter(sfinish,4) $tocharacter(speedlimit,3) \
$tocharacter(weather,1)
                                                 $tocharacter(visibility,1)
$tocharacter(speedmeter,1)
```

```
set output terminal
```

Department of Transport Truck Speed Study - Analysis of Crash Data 13 August, 1987

Crash Data Specification.

An examination of each of the States' coding manuals for their crash statistics has led me to the following conclusions in relationship to the specification for the data I require for the crash data in this study.

Each of the States has collected their own idiosyncratic set of data. There is no common data specification for the States. Therefore the most practical way for us to collect the crash data from the States is not by specifying which variables I want extracted but by asking them for a complete in situ dump of their existing databases for the vehicle types and time periods which specified below.

This approach i.e. a complete dump of their data sets, has been confirmed in conversation with Mr David Wigley of I.P. Sharp Computers in relationship to their experience of State traffic data vis-a-vis the fatal file. In their experience the most practical and most expedient method is a straight dump of the data. It will then be up to myself and David to extract from these dumps the common sets of crash variables. This will be done on the I.P. Sharp system.

Specifications which should be issued to the States include.

I. Time Frame

The time period for which I would like the crash data provided would be from June 1981 through to their most current online data. In relationship to New South Wales I currently hold June 1981 through to June 1985 and thus I am requesting data from 1 July 1985 through to their most current online data.

In my experience the State's crash data is at least one year behind the current date. It is imperative that the crash data that they provide be inclusive of the dates that they decide upon. I realise that in most States there will not be any crash data overlap with the Free speed dates of this study.

- II. For all States <u>except</u> New South Wales and Western Australia, I am only interested in <u>FATAL CRASHES</u>. For NSW and WA I would like all crashes - Fatal and Casualty (admitted to hospital only).
- III. Vehicle Types to be included in the Specification

I would like from each State a complete dump of all crashes (as specified in I. and II. above) which involve at least one truck. The definition of truck that I have used in the past and will continue to use is based currently on the New South Wales Traffic Accident Authority's specification.

The vehicle codes which were included in the original time series analysis of New South Wales were code numbers 7, 9 through to 18 inclusive. These codes denominate the following vehicle types:

Code No.

Description

7	Light trucks/lorry/panel van/utility design	not	based	on car
9	Rigid or unspecified tanker			
10	Articulated tanker			
11	Large rigid lorry			
12	Semi-trailers			
13	Low loaders/goose neck float			
14	Public Transport Authority bus			
15	Large distance tourist buses			
16	School buses			
17	Other buses			
18	Unspecified buses			

Please note that with the crash data I am interested in all vehicles involved in every crash in which at least one truck was involved. Thus if a crash involved one truck and five cars then I want that one truck and the five cars. Similarly, if it only involved one truck and one car then I want the one truck and the one car.

IV. Database Linking Method.

It is important that each of the States provide a full description of the method by which the various sections of their database are linked together. For instance, in New South Wales they have a three file system; a crash file, a traffic unit file, and a person file.

For a crash which is recorded in the crash file there is a unique crash ID number. That crash ID number links all the traffic units in the traffic unit file which were involved in that crash and also links all the persons in the person file who were involved in that crash.

Thus the method of linking is very important. I would like a full description of how that linking works because I will have to implement that linking procedure.

In New South Wales there were some peculiarities in the way in which the linking occurred. That is, you required not only the crash ID number but also a traffic unit ID number and a date. The combination of those three pieces of information facilitated the unique linking of the three data sets together. Thus if there are any idiosyncracies like that I would like them explained in detail.

If such details are provided it will save me calling the respective individuals in each of the States and hassling them.

Contact Person.

It is terribly important that each State designate a person in their organization who will be their computing contact person who I can call for details and questions on each of the data sets. That person must have an intimate knowledge of the databases, the computing systems and the linking procedures.

The Tape Format for transfer of the Data.

The magnet tape format which I would like the data written in by each State for transfer is:

1600 BPI density 9 track EBCDIC or ASCII Unlabelled Blocking factor (number of records per block) to be specified by each organization Number of characters per record

It is terribly important that the organizations providing this information on magnetic tape fully specify the writing characteristics of each tape. This information should be on a letter accompanying the tape.

I would also like a full description of what is on the tape in terms of files and also the record structure. Specifically:

- 1. a file map of the tape.
- 2. a listing of the first one hundred records of the first file and the last one hundred records of the last file so that I can verify that I have got the information the way it ought to be.
- 3. a record map, i.e. which variables are written in which columns on each record in each file type.

I do appreciated that in some years the format of the data in the records and also within the files will have changed. If there are different formats for different years I would like to know.

One other important point is that I need to have a complete table which has the following columns in it:

the year, the number of crashes, the number of vehicles, the number of persons.

In other words the expected N's for each of the file groups, so that if your State has a three file structure then for each year I would like to know how many crashes, how many vehicles and how many persons were involved so that when I read these files I can confirm the N's.

I realise that in many instances the volume of data require a large number of magnetic tapes. I am quite happy to read these tapes and return them to the individuals concerned as quickly as possible.

The end of the year and the ATAC meeting is accelerating at us very rapidly. Thus your speedy attention to this data transfer would be most appreciated.

Trucking along,

R W Fitzgerald

R W Fitzgerald & Associates, Po Box 125, Queanbeyan, NSW 2620 AUSTRALIA

APPENDIX 1: Vehicle Variables and Codes defining "TRUCKS" for each State					
NEW South Wales: As specified above					
VICTORIA:	VTYPE - page 2-73 of Code book. Vehicle codes 6-9				
QUEENSLAND:	TYPE of traffic unit involved - page 29 of code book. Codes 3,4 and Buses				
SOUTH AUSTRALIA:	UNIT TYPE - page 21 of code book. Codes 7-9				
WESTERN AUSTRALIA:	UNIT TYPE - page 9 of code book. Codes 5-7, 81-84 ?				
TASMANIA:	UNIT TYPE - Card type 2 # 45. Codes 6,9,10				
ACT:	TYPE - page 37 of code book. Codes 5-7,15,25- 27				

APPENDIX G - Free Speed data sheet problems

APPENDIX G - Free Speed data sheet problems.

1. STAGE 1 - Data Problems

a. The documentation (tally sheets) were quite often unavailable within the States. These tally sheets were used where available to check the total traffic volumes vs the sample traffic volumes and also the direction of the sampling and how that matched the total traffic volumes. Thus the two parameters we were interested in were:

i. the relationship between the total volumes and the sample volumes.

ii. we wanted to make sure that the direction in which the samples were taken matched those of the total traffic volumes. Table G.1 outlines the discrepancies noted.

<u>State</u>	Tally Sheet	Sample Type	Total Volume Type	Status
NSW	•	A	A	* bias
VIC	۲	В	А, В	٠
QLD		В	\$?
ŴA		A	A	• 24 hr
SA	*	A	A	*
TAS		в	В	*
АСТ				?
Sample Type:	A - bot	h directio	ns recorded	
	B - onl	y one dire	ction recorded	
Tally sheet:	* - ava	ilable		
Status:	* - acc	eptable		
	? - que	stionable		

Table G.1: Total traffic volume vs Sampled volume direction match

2. Detailed notes by State

NSW - The survey strategy used by New South Wales was different from all other States. A mix of two hours sampling in one direction and then two hours sampling in the opposite direction and sampling both directions at the same time were found. Sites 1002 and 1003 had doubled up on their total volumes. Thus the tally sheets were invaluable in checking the accuracy of the total traffic volumes recorded on the header sheet.

TAS - Tasmania claimed that they did a 100 per cent sample of articulated trucks and buses only in Stage 1. The Stage 2 data suggests that this was not the case.

NSW, VIC, ACT & SA -

The dates or times on the header sheets had errors requiring a 100 per cent verification check of the headers. The dates and times on the header sheets had to be accurate because they were used for matching to the free speed data.

3. Linking Validation

Once the header sheets and the free speed data had been cleaned and verified internally, a checked was then carried out on the ability of the header sheet data to link completely to all the free speed data that was available. The points that emerged were:

- 3.1 That we found 528 free speeds which could not be linked to their corresponding header sheet.
- 3.2 The final check revealed that 46 had weights which were zero. This indicated that they had no vehicle type recorded against the free speed.

Conclusion - The above successful linking indicated that our thorough editing had paid great dividends.

4. STAGE 2 - Data Problems

4.1. Total Volume Directions versus Sample Directions

	Tally	Sample	Total	
State	Sheet	Туре	Volume Type	Status
NSV	*	A	A	*
VIC	*	A,B	А,В	*
QLD	*	В	В	*
WA		A	A	*
SA	*	A	A	*
TAS		В	В	*
ACT	*	В	В	*
Sample Type:	A - be	oth directio	ons recorded	
	B - 01	nly one dire	ection recorded	
Tally sheet:	* - a	vailabl e		
Status:	* - a	cceptable		
	2 - 01	estionable		

Table G.2: Total traffic volume vs Sampled volume direction match

4.2. Data Problems by State

NSW - The free speed data provided were raw amphometer readings and needed numerical conversion to km/h.

 VIC - All the total traffic volumes were transcribed from the tally sheets so that it matched the sample volumes thus forcing consistency. A major consistency problem experienced was in the direction of the sample volume versus the total volume.

- QLD Queensland had no light vans. The digitector may not have recorded them, they just were purposely ignored or there was some definitional mix up.
- ACT The free speed sheets need ruled lines. Punching and matching the speed data to the vehicle type was tedious. Because there were no ruled lines the corresponding columns tended to wander.
- WA Western Australia had no tally sheets.
- TAS Dr Mark Leggett claims that Tasmania did a 100 per cent sample of all vehicles at their sites in Stage 2. Site 2503 for which total traffic volumes were listed on the header sheet show that the sample volumes were not 100 per cent, i.e. that the computed weights came to one. Most of the weights were around about 1.2 and 1.5 thus indicating that in Stage 2 the sample traffic volumes were not 100 per cent.

NSW, VIC and SA -New South Wales, Victoria and South Australia had a number of date/time errors on the header sheets which were edited and checked.

4.3. Linking validation

We found 4,180 unlinkable speed records. We were able to fix all these bar one. The final check revealed two with weights of zero.

Conclusion - all up, the Stage 2 data is a cleaner file than Stage 1.

5. STAGE 3 - Data Problems

5.1. Total Volume Directions versus Sample Directions

Table G.3: Total traffic volume vs Sampled volume direction match

State	Tally Sheet	Sample Type	Total Volume Type	Status
NSW	*	В	B	*
VIC	٠	A	A	*
QLD	*	В	В	*
ŴĂ	*	В	В	*
SA	*	A	A	*
TAS		В	В	*
ACT	•	В	В	*
Sample Type:			ons recorded ection recorded	
Tally sheet:	• - a	vailable		
Status:	• - a	cceptable		

5.2. Data Problems by State

- ____ Once again, 100 % sampling was implemented. TAS
- No ruled lines on the free speed sheets made punching ACT interesting. No times were recorded against the speed data.

NSW had changed to direct data acquisition using NEC NSV laptop PC's. The speed data and header sheets were recorded directly to disc by the field staff. The data supplied was on a Macintosh II disc and need to be translated to IBM standard. The data transfer was clean and expedient. Full marks to NSW.

5.3. Linking validation

We found 5 unlinkable speed records.

Conclusion - the Stage 3 data was the cleanest data of all stages.

6. Conclusions

- The tally sheets are needed to verify the direction match 6.1. of sample and total traffic volumes. The tally sheet are needed for two reasons:
 - 1. We want to know how the total traffic volumes were recorded i.e. one direction or both.
 - We want to ensure that the direction of the 2. sample volume and total traffic volume are identical.
- We do not need the sample volume data on the header, 6.2. sheets. This is computed from the free speed data itself.
- 6.3. The header sheet needs redesign and simplification.
- 6.4. Better quality control of the speed recording by the field team. The field team should get some direct feedback via a brief report on how their sites compared to others. Having spent time sitting in a field vehicle with the field staff from the ACT I can appreciate how in the dark they are.

186

187

1. Aptness of the parametric ANOVA model

Small departures from normality of the error terms do not create serious problems for ANOVA, however major departures can be of considerable concern and would therefore require the abandonment of the ANOVA model. The normality of the error terms can be studied by a number of methods and these are:

- a. Construction of a histogram of residuals to see if gross departures from normality are indicated.
- b. determine what percentage of the standardised residuals fall with the range plus or minus one standard deviation. The percentage ought to be 68%.
- c. A further possibility is to plot the residuals on normal probability paper to see whether a straight line is produced.
- d. Use statistical tests such as Kolmogorov-Smirnov (K-S) to test the residuals against the standard normal distributions. (Neter & Wasserman 1974, 107)

The six major points which need to be considered when deciding on the aptness of the ANOVA model are the following:

- a. In this instance is the regression function linear?
- b. Do the error terms have constant variance?
- c. Are the error terms independent?
- d. Does the model fit all points and how many out-liars are there?
- e. Are the error terms normally distributed?

f.How well does the model fit overall and should other variables be added?

ANOVA makes a series of six assumptions regarding the underlying statistical distribution of the variable in question. These are: (Neter & Wasserman 1974, 427)

- 1. the ANOVA model is $Y_{1,j} = mean_{1,j} + error term_{1,j}$.
- 2. the expected value of the error terms is zero and therefore the expected value of all the vij is equal to the meani.
- 3. Since all the factor levels have a constant mean; therefore the variance at each factor level should also be exactly the same.
- 4. Since the error terms are normally distributed so are the observations Y_{ij} . This follows because the observations Y_{ij} are a linear function of the error terms. Thus the error terms are normally distributed with mean zero, variance S^2 .

5. The error terms are assumed to be independent. Thus since the error terms are independent so are the observations $Y_{1,j}$.

A consequence of the features mentioned above is that the $Y_{1,1}$ s are independently and normally distributed with a mean of mean, variance S^2 .

Thus the major departures which have to be examined are

- * the non-independence of the error terms.
- * constancy of the error terms variance across the factor levels.
- * the independence of the error terms.

Because of the demonstrable departures of the free speed data from the ANOVA assumptions above we abandoned the parametric ANOVA model and instead opted for the nonparametric equivalents - the K-W and K-S test.

The major nonparametric test which have been used are the K-S test of goodness of fit and the Kruskal-Wallis (K-W) one-way analysis of variance.

The assumptions made by the K-S goodness of fit test (Daniel 1978, 268) are that the data consist of independent observations constituting a random sample of size N from some unknown distribution function designated by F(X). The important feature of the K-S is that it does not make any assumption about the normality of the distribution.

By comparison the K-W ANOVA by ranks makes the following assumptions:25

- i. That the data for the analysis consist of K random samples.
- ii. The observations are independent both within and among samples.
- iii. The variable of interest is continuous.
- iv. The measurement scale is at least ordinal and the populations are identical except for a possible difference in location for at least one population. Thus the assumptions are nowhere near as stringent as the parametric ANOVA specifically in relationship to the normality of the distribution or the constancy of variance.

2. Testing the normality of the speed distributions with the K-S test.

Tables 4.8 and 4.9, contain the tests of the two major assumptions, that is the normality of and independence of the error terms. They contain a complete test assumption matrix for all the levels of significance testing that referred to in the results analysis. The following points need clarification:

- a. there are a large number of tests. The question of simultaneous testing probabilities is covered in parametric statistics by using and adjusted and conservative alpha level. There is unfortunately no similar adjustment procedure for lots of non-parametric tests.
- b. a large number of the speed distributions when tested by K-S show significant results i.e. they are not normal. Looking at a plot of the corresponding distribution would not readily lead one to that conclusion. Thus doubt is cast on the conclusions of the K-S test.

²⁵ (Daniel 1978, 200)

Plot H.2 contains a frequency distribution for the residuals of articulated vehicles in New South Wales. The corresponding K-S tests gives an alpha level of $\emptyset.042$ and with a decision alpha level of $\emptyset.05$ you conclude that the distribution is not normal.

It is important to note here that the residuals are a real continuous variable as distinct from the speed values which are continuous but discrete, i.e. they can only assume integer values.

By comparison if we examine the residuals for articulated vehicles in the ACT (plot H.3) the departure from normality seems more extreme. The K-S tests produces an alpha value of \emptyset .412 and thus you conclude the distribution is normal.

We decided to reassure ourselves of veracity of the K-S tests in deducing the normality of distributions.

3. Kolmogorov-Smirnov accuracy testing

The question which began to emerge was that a lot of the K-S tests seem to produce results which gave probability levels of 0.05 and less, thus suggesting that the distributions were non-normal when in actual fact a visual inspection seems to suggest that the departures were not gross. What was the ability of the K-S test to differentiate between a normal and non-normal distribution?. To this end we generated four samples of random normal deviates to test the K-S ability to differentiate between normal and non-normal distributions.

Sample 1 consisted of 2,000 integer normal random deviates. Sample 2 consisted of 2,000 normal random deviates as real numbers and sample 3 consisted of 4,000 normal random deviates as integers. Finally sample 4 consisted of 2,000 poisson distributed random deviates (integers).

Table H.1 summarises the corresponding K-S values for these four different sets of random samples.

The ability of K-S to test the poisson distributions departure from normality was excellent. The alpha value of $\emptyset.967$ for the poisson test, was very comforting indeed. The point to note here is that the error distribution is discrete and this matches exactly with the theoretical distribution (poisson) which is also discrete (integer). Thus where there is an exact correspondence between the numerical characteristics of the sample and theoretical distributions the K-S performs very well.

The K-S for the real values of the normal random deviates (sample 2) gave a value of 0.507 which successfully concludes that sample 2 in normal. Note the correspondence between the numerical characteristics of the sample and theoretical distributions.

For sample 1 (integer valued normal random deviates) the K-S performed poorly. It gave a value of $\emptyset.053$ which could be interpreted as marginally rejecting the null hypothesis and conclude that this distribution was non-normal (plot H.1).

It was precisely this situation with integer speed values being tested against a real continuous distribution using K-S that was producing a lot of K-S significance values with alpha values of \emptyset .1 or less.

Interestingly enough, if you then increase the sample size to 4,000 (sample 3) the K-S value rose marginally to 0.072.

<u>Conclusion:</u>

If the numerical characteristics of the sample and theoretical distributions are not matched then use a very low decision alpha value before for rejecting the null hypothesis. Thus all of the assumption results recorded in tables 4.8 and 4.9 are based on alpha levels of $\emptyset.01$ or less.

Dataset	Туре	N	K-S sig level
Normal	int	2000	0.053
Normal	real	2000	0.507
Normal	int	4000	0.072
Poisson	int	2000	0.967

Notes:

(1) The K-S test used was that contained within the NPAR TESTS procedure in SPSS/PC, ver 1.0.

(2) The pseudo random number generator used was derived from the journal "Applied Statistics", Fortran subroutines AS111, AS183, 1982. Also, see "The Computer generation of Beta, Gamma and Normal random variables", JRSS A, pg 431-447.

(3) K-S sig level is the reported significance level for the K-S test. Thus if our alpha level was set at $\emptyset.05$, then we would accept the null hypothesis (He: that the observed distribution function is normally distributed).

Count	Midpoint				
6		:X			
6	69	X:			
10	71	XX:			
22	73	XXX:XX			
20	75	XXXX:			
17	77	XXXX .			
44	79	<u> </u>	[
19	81	XXXXX .			
46	83	XXXXXXXXXXXX	XX.		
60	85	*****	XXXX.		
78	87	XXXXXXXXXXXX			
78	89	XXXXXXXXXXXX	XXXXXXXXXX		
104	91	XXXXXXXXXXXX		XX	
103	93		****		
128	95				
134	97		*****		
107	99		****		
102	101		****		
105	103	XXXXXXXXXXXX	****	XX .	
128	105	*****	****	XXX:XXX	
113	107	XXXXXXXXXXXX	****	X:XX	
103	109	*****	*****	XX	
90	111	*****	XXXXXXXXX : XX		
76	113	*****	XXXXXXX :		
57	115	XXXXXXXXXXXX	XXX .		
66	117	*****	X:XXXX		
36	119	XXXXXXXXX .			
42	121	*****			
25	123	XXXXX:			
24	125	XXXX:X			
13	127	XXX.			
10	129	XX:			
10	131	X:X			
			+I+		
		0 40	80		16Ø 200
		Bi	stogram Freque	ncy	
Random Nor					
Mean	99.984	Std Err	.291	Median	100.000
Mode	94.000	Std Dev	13.014	Variance	169.369
Kurtosis	.042	S E Kurt		Skewness	.037
S E Skew	.055	Range	98.000	Minimum	56.000
Maximum	154.000	Sum	199967.000		
Number of	cases 2000				

Notes: (1) the "." on the plot are the expected normal frequencies overlayed on the observed frequencies.

Count	Midpoint						
4	-23.5	:					
5	-22.0	Х.					
5	-20.5	Χ.					
10	-19.0	XX:					
17	-17.5	XXX:					
21	-16.0	XXXXX.					
21	-14.5	XXXXX .					
40	-13.0	XXXXXXXX:X					
55	-11.5	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
70	-10.0	XXXXXXXXXXXXXXX	XXXX				
42	-8.5	XXXXXXXXXX	•				
91	-7.0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
54	-5.5	XXXXXXXXXXXXXXXXX	•				
119	-4.0	XXXXXXXXXXXXXXXXX	XXXXXXXX:XX	XXXXX			
100	-2.5	XXXXXXXXXXXXXXXXX	· · · · · · · · · · · · · · · · · · ·				
120	-1.0	XXXXXXXXXXXXXXXX		XXXXX			
77	.5	XXXXXXXXXXXXXXXXXX	XXXXX .				
110	2.0	XXXXXXXXXXXXXXXXX		XXX			
87	3.5	XXXXXXXXXXXXXXXXX					
98	5.0	XXXXXXXXXXXXXXXXX					
55	6.5	XXXXXXXXXXXXXXXXXX					
73	8.0	XXXXXXXXXXXXXXXX	XX:X				
37	9.5	XXXXXXXXX	•				
55	11.0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
38	12.5	XXXXXXXXX:					
35	14.0						
29		XXXXX:X					
17		XXXX.					
10	18.5						
13	20.0						
5	21.5	X.		. .			
		I+I					
		Ø 40	80	-	60 200		
			gram Freque	ncy			
Articulated	vehicles	- NSW					
Mean	.001	Std Err	.237	Median	260		
Node	260	Std Dev	9.296	Variance	86.423		
Kurtosis	.306	S E Kurt	1.999	Skewness	.052		
S E Skew	.062	Range	66.900	Minimum	-33.160		
Maximum	33.740	Sum	1.600		· · · - · v		
Valid Cases		Missing Cas					
TATTA CADED	1000	missing cas					

Notes: (1) the "." on the plot are the expected normal frequencies overlayed on the observed frequencies.

Count	Midpoint					
Ø	-25.0	•				
1	-23.5	:X				
0	-22.0	•				
1	-20.5					
1	-19.0					
1	-17.5					
Ø	-16.0					
5	-14.5	XXXXXX:XXX				
4		XXXXXXX:				
10		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
1	-10.0					
7		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
7		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
18		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
22						
9		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
11						
3		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
15						
10		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
13						
13		XXXXXXXXXXXXXXX: XXXXXXXX				
4		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
3		XXXXXX .				
3	11.0					
		XXXX .				
2						
1	15.5					
Ø	17.0					
3		XX:XXX				
2		X:XX				
3		X:XXX				
0	23.0					
1	24.5					
		I+I+I+I+I				
		0 5 10 15 20 25				
		Histogram Frequency				
Articulated	vehicles	- ACT				
••						
Mean	001	Std Err .697 Median -1.210				
Mode	-2.210	Std Dev 9.245 Variance 85.466				
Kurtosis	1.500	S E Kurt 1.989 Skewness .640				
S E Skew	.183	Range 62.180 Minimum -22.940				
Maximum	39.240	Sum230				
Valid Cases	176	Missing Cases 1				

Notes: (1) the "." on the plot are the expected normal frequencies overlayed on the observed frequencies.

APPENDIX I - Radar, Amphometers and Automatic counters

1. Bias induced by Radar vs Amphometer speed measurement.

There is considerable controversy over the bias that using a speed deterrent device has on free speeds. The argument suggests that speeds measured with radar will be reduced because radar can be detected by radar detectors in vehicles.

Truck drivers have radar speed detectors of considerable sensitivity and complexity. They often travel in a convoy with the "detector" up front. CB radio is also used extensively by truck drivers for social contact, making other drivers aware of driving hazards ahead and to warn of the presence of either police enforcement or other suspicious roadside activity, i.e. speed surveys.

Police forces have responded to these detectors by

- * having them banned
- * switching to other undetectable (for the moment) radar bands
- * using "slant" radar which because it slants acutely across the road is virtually undetectable until it is too late.

Thus it is reasonable to assume that if radar (which is used by Police as an enforcement tool) is used for measuring speeds as part of a speed survey that truck drivers driving behaviour will be affected. Field team experience suggests that as soon as a radar beam is detected, a truckie will measurably put on the "anchors" (brake and slow down). However, this is not always the case.

Equally, the proponents of automatic classifiers suggest that automated speed recording is unobtrusive and indicates higher mean free speeds than recorded by radar (Wells 1987). Automatic classifiers however are not as accurate and reliable as their proponents suggest.

In Norrish's (Norrish 1985) paper on automatic classifiers and their accuracy he found that the amphometer speeds were all <u>higher</u> than the automatic classifier speeds.

Armour found (Armour 1984) in a paper which examined the effect of police presence on urban driving speeds that the number of vehicles exceeding the speed limit can be reduced by two thirds by visible police activity. However, drivers returned to their normal driving behaviour very soon after passing the police. She also noted a "memory effect" of the police presence for a period of less than two days.

There is little evidence to suggest that these enforcement effects can be generalised to rural drivers with the exception of the immediate speed reduction in the obvious presence of police.

The work by Johnston & Fraser (Johnston & Fraser 1983) suggested that visible vehicle detectors did not influence driver behaviour. Thus there is contradictory evidence regarding the drivers' response to the presence of a speed detector.

Very few studies have met this controversy head on. One such is by Croft (Croft 1985) when reviewing speed limit differentials for HCVs. In table 3 (Croft 1985, 9) he presents the results of "a series of replicated measurements" taken on a rural freeway in mid 1985 using both radar and amphometers. The recordings occurred in two blocks, one at night and the other during the day.

Croft concluded that: 1. there was no difference in car speeds as measured by either instrument during either time period. 2. night time truck speeds as measured by amphometers were higher than the radar speeds. There was no difference during the day. (Croft 1985, 9).

In interpreting these results, Croft has not outlined the method by which these "replications" were carried out. Were the radar and amphometer readings concurrent at the same location or were they separated? Was the amphometer placed two or three kilometres up road from the radar or vice versa? Without any description of the experimental design adopted, the results cannot be relied upon.

All the studies reviewed on this question lack a good discussion of experimental design. Could a repeated measures design be implemented? Would some sort of blocking help differentiate the treatment effect? And which are the factors and which the treatment effects? The research question to be asked may not be whether radar biases speed but how good are radar detectors at detecting radar and how many drivers use them?

This present study was not designed to address the radar bias question. However, some overall results may add further fuel to the debate.

Table I1 summarises the results of this study's observations regarding the radar induced bias of free speeds. The following conclusions and cautions can be drawn:

1. Over all study stages radar recorded speeds ($94.9~\rm km/h$) were LOWER than non radar recorded speeds^{26} ($102.2~\rm km/h$). This difference was statistically significant.

An ANOVA to test and remove the State by Radar and State by speed limit interactions is required to test whether the observed effect is confounded by these interactions.

2. The table has aggregated all study stages together thus smoothing the speed limit increases for trucks from 80 to 90 km/h. It has also aggregated cars and trucks together. Croft suggested (Croft 1985, 9) there were differences between vehicle types. These effects may be confounding the results.

²⁶ No automatic recording data was used in this study. Thus "non radar" recorded speeds refer to amphometer and infra-red beams.

Table I1 : Speed measurement devises and their effect on mean free speeds. All study stages combined.						
	Mean	Std	Sample			
(kph) dev size RADAR measurement						
NSW	101.7	12.8	867			
VIC	93.1	11.8	11181			
QLD	94.6	11.7	18656			
ŜA	99.4	14.2	11833			
TAS	89.4	13.3				
ACT	93.0	12.3	77Ø1			
Total	94.9	12.8	53789			
Amphometers or Digitectors beams						
NSW	101.4	12.7	12237			
WA	103.1	14.2	9855			
Total	102.2	13.4	22092			
Grand total	97.0	13.4	75881			

Notes:

- (1) The difference between the total mean for Radar (94.9) and that for other devises (102.2) is statistically significant (one way ANOVA, alpha < 0.05)</p>
- (2) The above difference may be confounded by the inter state differences in speed limits. Thus WA had speed limits of 100kph which increased to 110kph for articulates.

.

3. A contra indication for the bias argument is present in NSW where they used both devices. There was NO difference in the mean free speeds recorded. The sample sizes are small.

Summary:

1. The argument that radar induces bias in speeds cannot be confirmed or denied by the results from table I1. The results contain too many confounding factors.

2. Better experimental designs are required to fully assess the question of radar induced bias.

2. Automatic traffic counters - Victoria and New South Wales

The use of automatic traffic counters is a long and thorny debate. It also arises in regard to the induced bias of using radar speedguns to record vehicle speeds.

Automatic traffic loggers such as the "Saratosa traffic classifier" consist of two 2.5m rectangular loops which are either taped or embedded in the road surface. The loops are connected to the classifier which controls the resonate frequency in the loops and logs both the vehicle length and its speed into counting "bins". Thus for vehicle length there are two bins into which all vehicles passing over the loops are placed. These bins are usually set to less than or equal to 6m and greater than 6m.

The classifier can be "interrogated" by another portable computer such as a NEC 8201A laptop which is used to both program the classifier and download the contents of the bins for latter analysis.

3. Victoria

An analysis of truck speed data obtained from automatic classification counters was sent to FORS after the October 1986 stage 1 surveys. It is a draft paper produced in February 1987 by Lynette Wells of the Victorian RTA.

The methodology adopted by the RTA consisted of overlapping automatic counting operations with the FORS speed surveys in October 1986 at a small number of the sites.

The thrust of Lynette Wells' paper is that when the radar was present during these automatic data counting periods the speeds recorded were significantly reduced. The point that has been completely missed is just how accurate is the automatic data whether the radar is present or not.

Victoria propose the automatic counters should be used as the only source of measuring both vehicle type and speeds. Yet it does not present any evidence as to the accuracy of these automatic devices in measuring either vehicle type or speed. Interestingly enough the engineer's comments on this study make no note of these points at all but says (note 5.4)

"A previous study conducted using this technique, i.e. using radar and monitoring driver reaction using CB radios, was conducted by a firm of consultants in 1978". This refers to the Callaghan study (Callaghan 1978) "and no problems in the use of radar are reported in that survey."

Two quite separate hypotheses arise regarding the automatic counting data presented by Victoria. These are:

1. What calibration results are available for the automatic data provided. Two sets of calibration variables at least are required:

a. how accurate is the automatic counter in classifying articulated vehicles/trucks (> 6m in length) from other vehicles such as cars. The sum of the two length bins also addresses the question of straight vehicle counts. The evidence from other States such as NSW (both TA and recently the Department of Main Roads) suggests that their accuracy is not as high as the manufacturers maintain and can be in error by as much as 15 per cent.

b. how accurate is the automatic counter data at classifying the speeds of the vehicles passing over the loops.

The calibration data could either come from laboratory research under tightly controlled circumstances or from matched experimental designs in which another fully calibrated speed and vehicle counting instrument (such as the infra-red light beams with human counters) was used.

2. Assuming that the automatic counters are accurate and fully calibrated (which they are not), what bias is induced by the presence or absence of radar speed recording.

It has been shown elsewhere by Croft (Croft 1985) and above that radar does induce bias.

The paper by Lynette Wells addresses this bias hypothesis, not the calibration problem. The paper assumes that the base measuring instrument (the automatic counter) is fully calibrated and is a totally accurate measuring instrument upon which to compare the radar results. There is no evidence presented in this paper that substantiates the calibration or accuracy of the automatic counter.

Thus the results quoted in this paper are seriously confounded. Does the bias come from the radar or from the automatic counter? The question becomes: Which is in error, the radar or the automatic counter? Wells implies that because the automatic counter is accurate the error is induced by the presence of radar.

In summary what is needed to resolve the issue regarding automatic counters is:

A calibration study of the automatic counters.
 A matched experimental design of radar and automatic counters with controls.
 An evaluation of field team induced error i.e. recording errors.

Because the data provided by Victoria did not address the calibration hypothesis no further analysis was justified.

4. New South Wales

A brief paper titled "Comparison of vehicle speed measuring equipment" by Norrish (Norrish 1985) of the Traffic Authority of NSW produced equivocal results. The study was designed to address the calibration hypothesis cited above.

Some interesting points emerged.

1. The "Saratosa VC1900" traffic classifier costs some \$6000 and is used in conjunction with a NEC 8201A laptop computer for interrogation of the classifier.

2. The classifier collects the length and speed data into bins which are dumped to the data logger every 15 minutes. Thus individual vehicle free speeds with time stamping is unavailable for any calibration research.

3. The test equipment was set up by the Australian supplier "Australasian Traffic Surveys". Tuning the loops is considered a delicate "black art" by the supplier.

4. This loop frequency tuning required the use of a radar speedgun to calibrate the classifier.

5. No calibration data for the classifier is available from the supplier.

Table I2 outlines the comparison between the automatic classifier's total traffic count compared to simultaneous manual counts. There were seven separate samples taken and in every case except one (sample 3) the two counts differ. A goodness of fit test using the manual count totals as the expected frequency indicated that the classifier count totals were not significantly different from the manual expected frequencies.

The results of Norrish's comparison were "disappointing". The study did not recommend the adoption of the classifier.

Sample	Automatic	Automatic counter			Manual counts		
	(6 m))6 m	Total	Cars, lvan,mcyc	Artic	Buses,Trucks Total	
1	80	74	154	69	71	140	
2	63	104	167	56	94	150	
3	60	93	153	61	92	153	
4	36	91	127	36	79	115	
5	7	19	26	8	20	28	
ó	13	33	40	12	38	5 0	
÷	27	4 Q	76	35	62	7.7	

Table I2: <u>NSW Traffic Authority sutomatic counter data vs manual</u> traffic counts validation tests.

Notes;

(1) A chi-squared test of goodness of fit between the totals for the automatic (observed) and manual data (expected) gives:

Chi-squared = 5.05, df = 6 with an alpha level of 0.54. Thus the test indicates that the observed frequencies are not significantly different from the expected frequencies.

(2) The automatic counter used was a "Saratosa" traffic classifier installed by "Australasian Traffic Surveys" for the NSW TA.

(3) Manual counts were carried out by an experienced field team from the NSW TA.

(4) The samples were conducted on 28-29 May, 1985, 23 km south of Berrima on the Hume highway.

(5) Data supplied by the NSW TA, paper F733.

Contact Mr. John Norrish (02) 663 8274.

IX. INDEX

100 kph speed limit 3 110 kph speed limit 6, 7 2 lane divided 27 2 lane only 27 24 hour 7, 10, 17, 43 52 90 kph 9 speed limit 6 A Review of Rural Speed Limits in Australia paper 6 ABS 24 Accident severity 2 Accidents & casualty rates 6 Accidents rates 2 Accuracy 200, 201 ACRUPTC 2 ADR 2, 3 Aggregated free speed 27 ALL roads 27 All-roads 31 Alpha level 190 Amphometer 9, 14, 24, 184, 197 Analysis of variance 25 ANOVA 25, 40, 188, 189 Aptness 188 Armour paper 197 Artic - Artic 40 Artic - Car 39, 40 Articulated truck 2, 6, 183 Articulated vehicle 7, 11, 12, 14, 26, 27, 28,
 30,
 31,
 32,
 33,
 34,
 37,
 37,
 40,
 102, 160, 43. 161, 190 Articulated vehicles 201 Articulates 37 ASCII 175 Assumption testing 188 Assumptions matrix 26 ATAC 3 Australasian Traffic Surveys 202 Australian Capital Territory 15 author 25 Auto correlation 25, 26, 27, 43 Automatic classifier 24, 102, 197 Automatic counter 10 Automatic traffic counter 200 Balanced design 25 Bartlett test 25 Barton Highway 15

Before and after design 9 Bias 102, 197, 201 Bias induced by Radar 197 Bus 11 Calibration 201, 202 Callaghan author 3, 14, 201 paper 4 Capital Cities 5 Car 2, 3, 4, 5, 7, 8,11,12,28, 30,33, 37,43, 90, 102,161 Car - Artic 39, 40 Car - Car 39 Car lead platoon 32 Cars towing 11 Catch-up rate 36 CB 197, 201 radio 7, 10, 14, 15 Comparative data 42 Compliance Speed limit compliance 3, 4, 6 Confounded control 31, 99 Confounding factor 27 Conspicuity 10 Control 7, 27, 29, 31, 33, 99 Correlation 90, 159, 161 statistics 6 Cowley author 5, 6, 14 paper 5 Crash 90, 93 Crash occurrence 90 Crash rates 2 Crash risk 38, 101 Crash severity 3 Crash statistics 90 Crashes 91, 102 Croft author 90, 201 paper 197 Cusum analysis 92, 93 Cyclic trend 93 Data collection form 164 Data collection methodology 42 Data Collection procedures 9 Data transfer 175 Database cleaning 164 Database manipulation proce-

dures 16 Database model 16 Database structure 16, 175 Date 16 Day/night effects 7 Daytime mean free speed 33 DBASE III 17 Department of Main Roads 201 Differential speed limits Speed differentials 3 Digitector 14 Direction 16, 164, 175, 183 Direction of travel 9 Discussion 101 Divided highways 4 Divided road 15 Driver behaviour 10 Editing 164 Energy consumption 6 Enforcement police 197 Entity set 16 Environmental aspects 11 Error distribution 25, 26, 99 Error term 188, 189 Error variance 25, 26, 99 Experimental design 198 Experimenter variability 165 Extended relational model 16 Eyre Highway 7, 8, 37, 40, 42, 90, 91 Farthing author 159 paper 161 Fatalities 44, 90, 91, 102 Fatality 91, 93 Fatality rates 6 Field team 9, 10, 15, 186, 201 Fieldwick paper 90 Flow rate 36, 159 FORS 3, 12, 15, 33, 42, 200 paper 41 Free speed 9, 12, 14, 16, 25, 27, 42, 90, 160 Free speed data 26, 99 Free Speed data sheet problems 183 Free speed distribution 26, 99 Free speed distributions statistics 5 Free speed survey 91 Freeway 29 Freeways 5, 9 Frith & Derby paper 91 Gamma distribution 36 Hawthorn effect 10 HCV 5, 9, 12, 42, 90, 101, 197

Header sheet 24, 165 Header sheets 175 Heavy Vehicle Speed Limits 41 Paper 3 Heavy Vehicles on the Eyre Highway paper 7 Homogeneous 26, 99 Hypotheses examined 24 IBM PC/XT 175 Indicator 38, 101 Infra-red light beams 7, 9, 14, 24, 36, 201 Inter-experimenter variability 10 International studies 90 Johnston & Fraser authors 7 paper 197 Journey time 6 K-Band radar see radar 15 K-S 188, 189, 190 K-S test 26 K-W 189 Kolmogorov-Smirnov 188, 190 KR11 15 Kruskal-Wallis 189 Laptop PC's 186 Legislative change 7, 8, 9, 24, 27, 29, 33, 34, 37, 41, 90, 92, 100, 101 Legislative changes 93 Light van 11 Linking Validation 184, 185, 186 Literature 101 Location 16 Longitudinal data 7 Loong & Budd author 25, 90 authors 2, 3 Loops 200, 202 Lynette Wells author 201 paper 200 Main road 9 Maisey author 7, 8, 10, 25, 27, 33, 42, 90 paper 7 Majura Road 15 Match 183 Matched see matching 17 Matched experimental design 201

Matching 9, 159, 160 Mathematical model 35 Mean free speed 25, 27, 28, 30, 31, 33, 34, 37, 39, 41, 43, 99, 102, 161 Methodology 9, 200 Mix 40 Motorcycle 6, 7, 8, 11, 43 Multi-vehicle crash 2 NAASRA studies 44 NEC 8201A laptop 200, 202 Netter & Wasserman author 188 New South Wales 14, 42, 200, 202 New Zealand 91 Night time mean free speed 33 NMDS 175 Non parametric 26, 99 Non-arterial roads 6 Non-normality 42 Nonparametric 102, 189 Normal distribution 36 Normal distribution 26 Normal random deviate 190 Normality 26, 188, 189 Normally distributed 188 Norrish author 197, 202 paper 202 NRFII 2 ORACLE 17 Other National Studies 41 Overtaking 29, 90, 91 Overtaking manoeuvres 3 Overtaking rate 25, 35, 36, 37, 102 Overtakings/hour/km 36 Parametric 189 Parametric statistic 26, 102 Parametric statistics 43 Passenger car equivalent 36 Pcthv 160 Percentage of articulated vehicles 29, 30 Percentage of cars 29, 31 Percentage of heavy vehicles 38, 160, 161 Percentage of trucks 37 Percentage of vehicles 28 Platoon 16, 32, 102 Platoon length 9, 32, 33 Platooning 32 Poisson 190 Police 14, 102, 197 Police force 27 Political agenda 11 Previous studies 41 Probability distribution 36

Proportion of heavy vehicles exceed speed limit 7 Proportion of trucks exceed speed limit 4 Proportion of vehicles exceed speed limit 5 Q-flow 17 Q-flow rate 24, 29, 160 Q-flow weight 159, 160 Queensland 27, 42 Queue 29 Radar 9, 15, 24, 102, 197, 200, 201 bias 10, 197 Radar speed detector 197 Radar speed gun see radar 15 Raw free speeds 175 Raw weight 160 Recording bias statistics 9 REFERENCES 103 Review of the Literature Rigid truck 2, 5, 7, 11, 12 Road characteristics 11 Road class 5 Road Environment 24 Road fatalities 37 Road type 24 Roadtype 175 ROSTA 2 author 90 Rural 91 Rural Rural crashes 93 Rural fatalities 93 Rural road 27 Rural roads 9 Sample 183, 186 statistics 4, 5, 9, 10 Sample fractions 12 Sample size 31, 33, 37 Sample traffic volume 160, 183 Sample volume 16, 17, 165 Sample volume count 164 Sampled volume direction match 183, 184, 185 Sampling Bias 34 Sampling method 11, 24 Sampling specification 33 Saratosa traffic classifier 200 Saratosa VC1900 202

SAS 25 Semi-trailer 7, 8 Seríal sequential pairs Speed differential 3 Severity crash 90 SIR 17 Site characteristics 9 Site description information 175 Site descriptions - site characteristics 10 Site descriptions - Traffic volume 11 Site selection 9, 12, 15 Slant radar 197 Solomon author 2, 90 paper 6 South Australia 42 South Australian 44 Speed category 32 Speed difference 42 Speed differential 5, 6, 24, 29, 36, 37, 38, 39, 90, 91, 102 Speed dispersion 38, 39, 41, 42, 101 Speed differential 2, Speed distribution 42, 189 Speed limit 24, 27, 42, 90, 101 Speed limit compliance 2, 3 Speed limits 2 Speed recording methods 14 Speed window 33, 41, 102 Speedgun see radar 15 Speedmeter 175 SPSS 17, 25 STAGE 1 - Data Problems 183 STAGE 2 - Data Problems 184 STAGE 3 - Data Problems 185 Standard deviation 31 Standard deviations statistics 5 Standardised residual 188 Statistical assumptions 25 43, Statistical distribution 187, 188 Survey site 30 Systematic sampling 12 TA 201 Tally sheet 164 Tally sheets 183, 184, 186 TARU see TA 2 Temporal attributes 10 Temporal range 159 The 1979/80 ACRUPTC

ffeevspeed survey 5 Thompson (1978) paper 6 Time 16 Time of day 33, 41 Time of recording 9 Time of the day 25 Time series 44, 93 Time series analysis 91 Total flow rate 161 Total traffic count 202 Total traffic volume 9, 12, 16, 17, 159, 160, 164, 183, 186 Total volume 16 Traffic flow 16 Traffic model 35 Traffic volume 36, 101 Trip cost 6 author 36, 37 paper 35 Truck 90 Truck Truck and bus speed limits 2 Truck operators 4 Truck speed compliance 5 Truck speed limit 90, 91 Two-lane divided 29 Two-lane road 35 Two-lane roads 29, 99 Two-lane undivided 29 Un-divided roads 5 UN-WEIGHTED 164 Unbalanced design 25 Undivided highway 4, 14 Undivided road 15, 27, 29 Variance 25 Variance of speeds 6 Vehicle count 201 Vehicle direction effects Vehicle mix 38 Vehicle type 9, 16, 160, 161 VHSOSS 2 Victoria 15, 24, 27, 42, 90, 93, 200, 201, 202 Victorian RTA 200 Visibility 24, 175 Walker method 36 Weather 24, 175 Weather conditions 9 Weight 16, 17, 2* 159, 164 statistics 5 Weighted averages statistics 5 Weighting Function 17 Western Australia 7, 14,

24, 27, 30, 36, 42, 90, 91, 93 ZIM 16, 17, 165, 175

-

-

.

.